This paper describes SAR directed design and synthesis of novel beta(1-4)-glucosyltransferase (BGT) inhibitors. The designed inhibitors 1-5 provide conformational mimicry of the transition-state in glucosyltransfer reactions. The compounds were tested for in vitro inhibitory activity against (BGT) and the inhibition kinetics were examined. Three of the designed molecules were found to be potential inhibitors of BGT having IC50 values in micromolar (microM) range. Useful structure-activity relationships were established, which provide guidelines for the design of future generations of inhibitors of BGT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0968-0896(01)00371-6 | DOI Listing |
Ultrasound Med Biol
January 2025
School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan ROC; Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan ROC. Electronic address:
Objective: This study aimed to validate the ultrasound speckle tracking (UST) algorithm, determine the optimal probe location by comparing normalized cross-correlation (NCC) values of muscle displacement at two locations (proximal vs. middle) of the biceps femoris long head (BFlh) using the UST, and investigate the effects of Nordic hamstring curl exercise (NHE) training on BFlh displacement.
Methods: UST efficacy was verified with ex vivo uniaxial testing of porcine leg muscles.
Biol Psychiatry
January 2025
Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, United States. Electronic address:
Background: Innovative treatments for paranoia, which significantly impairs social functioning in schizophrenia (SCZ), are urgently needed. The pathophysiology of paranoia implicates the amygdala-prefrontal (PFC) circuits; thus, this study systematically investigated whether transcranial direct current stimulation (tDCS) to the ventrolateral PFC can attenuate paranoia and improve social functioning in SCZ.
Methods: A double-blind, within-subjects, crossover design was used to compare active vs.
Bioengineering (Basel)
January 2025
Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.
: Falls and fall consequences in older adults are global health issues. Previous studies have compared postural sways or stepping strategies between older adults with and without fall histories to identify factors associated with falls. However, more in-depth neuromuscular/kinematic mechanisms have remained unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
Physical exercise effectively prevents anxiety disorders caused by environmental stress. The neural circuitry mechanism, however, remains incomplete. Here, we identified a previously unrecognized pathway originating from the primary motor cortex (M1) to medial prefrontal cortex (mPFC) via the ventromedial thalamic (VM) nuclei in male mice.
View Article and Find Full Text PDFGenome Res
January 2025
Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China;
The discovery of circulating fetal and tumor cell-free DNA (cfDNA) molecules in plasma has opened up tremendous opportunities in noninvasive diagnostics such as the detection of fetal chromosomal aneuploidies and cancers and in posttransplantation monitoring. The advent of high-throughput sequencing technologies makes it possible to scrutinize the characteristics of cfDNA molecules, opening up the fields of cfDNA genetics, epigenetics, transcriptomics, and fragmentomics, providing a plethora of biomarkers. Machine learning (ML) and/or artificial intelligence (AI) technologies that are known for their ability to integrate high-dimensional features have recently been applied to the field of liquid biopsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!