A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tactile, acoustic and vestibular systems sum to elicit the startle reflex. | LitMetric

Tactile, acoustic and vestibular systems sum to elicit the startle reflex.

Neurosci Biobehav Rev

Department of Psychology, University of Toronto, Toronto, Ont., Canada M5S 3G3.

Published: January 2002

The startle reflex is elicited by intense tactile, acoustic or vestibular stimuli. Fast mechanoreceptors in each modality can respond to skin or head displacement. In each modality, stimulation of cranial nerves or primary sensory nuclei evokes startle-like responses. The most sensitive sites in rats are found in the ventral spinal trigeminal pathway, corresponding to inputs from the dorsal face. Cross-modal summation is stronger than intramodal temporal summation, suggesting that the convergence of acoustic, vestibular and tactile information is important for eliciting startle. This summation declines sharply if the cross-modal stimuli are not synchronous. Head impact stimuli activate trigeminal, acoustic and vestibular systems together, suggesting that the startle response protects the body from impact stimuli. In each primary sensory nucleus, large, second-order neurons project to pontine reticular formation giant neurons critical for the acoustic startle reflex. In vestibular nucleus sites, startle-like responses appear to be mediated mainly via the vestibulospinal tract, not the reticulospinal tract. Summation between vestibulospinal and reticulospinal pathways mediating startle is proposed to occur in the ventral spinal cord.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0149-7634(01)00057-4DOI Listing

Publication Analysis

Top Keywords

acoustic vestibular
16
startle reflex
12
tactile acoustic
8
vestibular systems
8
primary sensory
8
startle-like responses
8
ventral spinal
8
impact stimuli
8
startle
6
vestibular
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!