Influence of vitamin E on the levels of fatty acids and MDA in some tissues of diabetic rats.

Cell Biochem Funct

Department of Chemistry, Faculty of Science, Firat University, Elaziğ, Turkey.

Published: March 2002

This study was performed to determine whether vitamin E supplementation in streptozotocin-induced diabetic rats treated with insulin could affect the levels of fatty acid composition and malondialdehyde (MDA) of brain, liver and muscle tissues. Thirty Wistar albino rats were used during the experiments. They were randomly divided into three groups, each consisting of six individuals. The first group was diabetic, the second was control, and the third was diabetic but fed vitamin E. The level of stearic acid in brain tissues decreased (p<0.05) in the second and the third groups as compared to the first group. The percentage of arachidonic and polyunsaturated fatty acids slightly decreased (p<0.05) in the diabetic group in comparison to the second and third groups. The proportion of docosahexaenoic acid significantly increased (p<0.01) in the second and third groups in contrast to the first group. The level of docosatrienoic was slightly higher (p<0.05) in the third group than in other groups. In the liver tissues, the proportion of stearic, oleic and total monounsaturated fatty acids was slightly higher (p<0.05) in the first group than in the other groups. The level of arachidonic, docosahexaenoic, unsaturated and total polyunsaturated fatty acid slightly increased (p<0.05) in the second and third groups as compared to the first group. The level of myristic and stearic acids in muscle tissue slightly increased (p<0.05) in the first group as compared to the second and third groups. The proportion of arachidonic, docosahexaenoic and unsaturated fatty acids slightly increased (p<0.05) in the second and third groups relative to the first group. The amount of MDA was slightly higher in the diabetic group than in the other groups in all tissues. The results indicate that vitamin E supplementation, in experimental diabetes could play a role in controlling the oxidative status and altered fatty acid metabolism in tissues, thereby maintaining favourable fatty acid distribution in the tissues affected by diabetic complications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbf.936DOI Listing

Publication Analysis

Top Keywords

levels fatty
8
diabetic rats
8
influence vitamin
4
vitamin levels
4
fatty acids
4
acids mda
4
mda tissues
4
diabetic
4
tissues diabetic
4
rats study
4

Similar Publications

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

Fecal microbiota transplantation (FMT) could significantly alter the recipient's gut bacteria composition and attenuate obesity and obesity-related metabolic syndromes. DL-norvaline is a nonproteinogenic amino acid and possesses anti-obesity potential. However, the specific mechanisms by which gut microbiota might mediate beneficial effects of DL-norvaline have not been completely elucidated.

View Article and Find Full Text PDF

Background: Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by damage and inflammation of hepatocytes. Some medicinal plants have shown antioxidant and anti-inflammatory effects on liver cells. We aimed to investigate the hepatoprotective effect of Heptex® capsules containing 200 mg of Dukung Anak (a powdered extract from aerial parts of Phyllanthus niruri) and 100 mg of Milk Thistle (a powdered extract from fruits of Silybum marianum) in patients with an apparent risk factor for NASH.

View Article and Find Full Text PDF

Systemic regulation of retinal medium-chain fatty acid oxidation repletes TCA cycle flux in oxygen-induced retinopathy.

Commun Biol

January 2025

Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA.

Activation of anaplerosis takes away glutamine from the biosynthetic pathways to the energy-producing TCA cycle. Especially, induction of hyperoxia driven anaplerosis in neurovascular tissues such as the retina during early stages of development could deplete biosynthetic precursors from newly proliferating endothelial cells impeding physiological angiogenesis and leading to vasoobliteration. Using an oxygen-induced retinopathy (OIR) mouse model, we investigated the metabolic differences between OIR-resistant BALB/cByJ and OIR susceptible C57BL/6J strains at system levels to understand the molecular underpinnings that potentially contribute to hyperoxia-induced vascular abnormalities in the neural retina.

View Article and Find Full Text PDF

Psilocybin represents a novel therapeutic approach for individuals with major depressive disorder (MDD) who do not respond to conventional antidepressant treatment. Investigating the influence of psilocybin on the pathophysiological processes involved in MDD could enhance our neurobiological understanding of the presumed antidepressant action mechanism. This systematic review aims to summarize the results of human studies investigating changes in blood-based biomarkers of MDD to guide future research on potentially relevant analytes that could be monitored in clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!