Biomedical applications of capillary electrophoresis with laser-induced fluorescence detection.

Biopharm Drug Dispos

Laboratory of Behavioral Physiology, Universidad de los Andes, Mérida, Venezuela.

Published: March 2002

Capillary electrophoresis (CE) is a high-efficiency analytical technique that has had a great impact as a tool in biomedical research, clinical and forensic practice in the last ten years. Only in one of the applications, the DNA analysis, it has had an explosive exponential growth in the last few years. This impact is expressed in an enormous amount of CE articles and many reviews. The CE advantages with respect to other analytical techniques: the required very small sample volume, rapid analysis, great resolution power and low costs, have made this technique ideal for the analysis of a numerous endogenous and exogenous substances present in biological fluids. The different modes of CE have been coupled to different detection techniques such as UV-absorbance, electrochemical, mass spectrometry and laser-induced fluorescence detection (LIFD) to detect different nature and molecular size separated analytes. This review focuses mostly on the applications of CE-LIFD, to measure drugs and endogenous neuroactive substances such as amino acids and monoamines, especially in microdialysis samples from experimental animals and humans. CE-LIFD trends are discussed: automated faster analysis with capillary array systems, resolution power improvement, higher detection sensitivity, and CE systems miniaturization for extremely small sample volume, in order to make CE easier and affordable to the lab bench or the clinical bed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bdd.277DOI Listing

Publication Analysis

Top Keywords

capillary electrophoresis
8
laser-induced fluorescence
8
fluorescence detection
8
small sample
8
sample volume
8
resolution power
8
biomedical applications
4
applications capillary
4
electrophoresis laser-induced
4
detection
4

Similar Publications

Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed.

View Article and Find Full Text PDF

Personal care products (PCPs), such as sunscreens, are usually found in various aquatic ecosystems at low concentrations (ng l to µg l). However, there is limited information regarding their effects on marine bivalves. Therefore, the aim of this study was to evaluate the sublethal effects of environmental concentrations (1 and 100 µg l) of benzophenone-3 (BP-3) in Crassostrea gigas oysters after 1 and 7 days of exposure.

View Article and Find Full Text PDF

Investigation and elimination of noncovalent artificial aggregates during non-reduced capillary electrophoresis-sodium dodecyl sulfate analysis of a multi-specific antibody.

J Pharm Biomed Anal

January 2025

State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Simcere Zaiming Pharmaceutical Co, Ltd., Nanjing, China. Electronic address:

Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) is widely used in the biopharmaceutical industry for monitoring purity and analyzing impurities. The accuracy of the method may be compromised by artificial species resulting from sample preparation or electrophoresis separation due to suboptimal conditions. During non-reduced CE-SDS analysis of a multispecific antibody (msAb), named as multispecific antibody C (msAb-C), a cluster of unexpected peaks was observed after the main peak.

View Article and Find Full Text PDF

Background: Hemoglobin G-Siriraj is a rare hemoglobin variant caused by a β-globin gene mutation (HBB: c.22G>A). The focus of this paper is aimed mainly at the chromatographic and electrophoretic properties of hemoglobin G-Siriraj for a presumptive identification.

View Article and Find Full Text PDF

Background: Glycosylated hemoglobin (HbA1c) is a stable compound in human blood that covalently binds the N-terminal valine residue of the β-chain in hemoglobin A to the free aldehyde group of glucose. It can reflect the average blood glucose level of patients in the past 2 - 3 months. Therefore, the accuracy of HbA1c detection results is of great significance for the diagnosis and differential diagnosis of diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!