The effect of forged unsintered hydroxyapatite/poly-L-lactide (u-HA/PLLA) composite films on spinal cord and nerve roots and its degradation behavior and osteoconductivity in epidural space were compared with those of calcined HA (c-HA)/PLLA and unfilled PLLA films. Partial laminectomy was performed on 20 rabbits, and u-HA/PLLA and PLLA films were implanted in the intervertebral space. Total laminectomy was performed on 30 rabbits to implant u-HA/PLLA, c-HA/PLLA, and PLLA films in both epidural and subcutaneous spaces. For up to 50 weeks, there were no histological changes in the spinal cord or nerve root, and no inflammatory cell infiltration into the epidural space around the films. The rate of decrease in viscosity average molecular weight of both composite films was initially higher than that of PLLA but eventually became lower, although there was no difference in the degradation behavior of the three films in either the epidural or subcutaneous spaces after 50 weeks. Scanning electron microscopic and energy-dispersive X-ray analysis indicated calcium phosphate deposits on the surface of composite films with new bone formation from 4 weeks. The u-HA/PLLA composite film therefore has good biocompatibility, osteoconductivity, and fast primary degradation rate, which may prove compatible with application to spinal surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.1283DOI Listing

Publication Analysis

Top Keywords

composite films
16
spinal cord
12
cord nerve
12
epidural space
12
plla films
12
films
9
unsintered hydroxyapatite/poly-l-lactide
8
films spinal
8
nerve roots
8
u-ha/plla composite
8

Similar Publications

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

A carbon nanotube (CNT) composite is an effective method to improve the thermoelectricity of materials. However, the depletion layer between the CNT and thermoelectric (TE) material always decreases the contribution of CNT to the conductivity of the TE material. It is important to eliminate the depletion layer for improving the TE properties.

View Article and Find Full Text PDF

Infinite Organic Solid-Solution Semiconductors with Continuous Evolution in Film Morphology, Crystalline Lattice and Electrical Properties.

Small

January 2025

Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China.

Constructing a solid solution is an effective strategy for regulating the properties of composite organic semiconductors. However, there presents significant challenges in fabrication and understanding of organic solid-solution semiconductors. In this study, infinite solid-solution semiconductors are successfully achieved by integrating rod-like organic molecules, thereby overcoming the limitations of current organic composite semiconductors.

View Article and Find Full Text PDF

Nonalloyed α-phase formamidinium lead triiodide solar cells through iodine intercalation.

Science

January 2025

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, P. R. China.

Formamidinium lead triiodide (FAPbI) is considered the most promising composition for high-performing single-junction solar cells. However, nonalloyed α-FAPbI is metastable with respect to the photoinactive δ-phase. We have developed a kinetic modulation strategy to fabricate high-quality and stable nonalloyed α-FAPbI films, assisted by cogenetic volatile iodine intercalation and decalation.

View Article and Find Full Text PDF

Acidic Engineering on Buried Interface toward Efficient Inorganic CsPbI Perovskite Light-Emitting Diodes.

Nano Lett

January 2025

School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.

Inorganic CsPbI perovskite has emerged as a promising emitter for deep-red light-emitting diodes (LEDs) due to its intrinsic thermal stability and suitable bandgap. However, uncontrollable CsPbI crystallization induced by an alkaline zinc oxide (ZnO) substrate in bulk film-based LEDs leads to insufficient external quantum efficiencies (EQEs) at high brightness, leaving obstacles in commercialization progress. Herein, we demonstrate an effective acidic engineering strategy with wide applicability to modify the surface property of ZnO and regulate CsPbI crystallization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!