Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effects of 10 mM caffeine (CAF) on intramembrane charge movements (ICM) were studied in isolated guinea-pig ventricular heart cells with the whole-cell patch-clamp technique. In the presence of CAF, the properties (voltage dependence, maximum Q(ON) [Q(max)], availability with voltage) of Q(ON) charge activated from -110 mV were barely affected. Following a 100 ms prepulse to -50 mV to decrease the participation of charges originating from Na channels, the voltage dependence of Q(ON) was shifted by 5 mV (negative component) and by 10 mV (positive component) towards negative potentials, and Q(max) was depressed by 16.5%. CAF drastically reduced in a time- and voltage-dependent manner Q(OFF) on repolarization to -50 mV, the effects being greater at positive potentials. CAF-induced Q(OFF) immobilization could be almost entirely removed by repolarization to voltages as negative as -170 mV. In these conditions, the voltage-dependence of Q(OFF) (repolarization to +30 to -170 mV) was shifted by 17 mV (negative component) and 30 mV (positive component) towards negative potentials, suggesting an interconversion into charge 2. Most of CAF effects were suppressed when the sarcoplasmic reticulum (SR) was not functional or when the cells were loaded with BAPTA-AM. We conclude that CAF effects on ICM are likely due to Ca(2+) ions released from the SR, and which accumulate in the subsarcolemmal fuzzy spaces in the vicinity of the Ca channels. Because CAF effects were more pronounced on Q(OFF) than on Q(ON) the channels have likely to open before Ca(2+) ions could affect their gating properties. It is speculated that such an effect on gating charges might contribute to the Ca-induced inactivation of the Ca current.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573184 | PMC |
http://dx.doi.org/10.1038/sj.bjp.0704520 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!