A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of cardioselective KATP channel antagonism on basal, stimulated, and ischaemic myocardial function in in vivo failing canine heart. | LitMetric

Effects of cardioselective KATP channel antagonism on basal, stimulated, and ischaemic myocardial function in in vivo failing canine heart.

Br J Pharmacol

Department of Medicine, Division of Cardiology, Johns Hopkins Medical Institutions Baltimore, Maryland 21287, USA.

Published: February 2002

Inhibition of cardiomyocyte-specific ATP-sensitive potassium (K(ATP)) channels prolongs the action potential during intense ischaemia with attendant antiarrhythmic effects. However, this is accompanied by contractile depression in some models. These changes may be particularly troublesome in dilated cardiomyopathic hearts that display basal systolic dysfunction, limited energy reserve, and prolonged repolarization favouring arrhythmia. Mechanical effects of selective myocyte K(ATP) channel blockade on basal, beta-adrenergic stimulated, and ischemic responses were therefore tested in dogs with cardiac failure induced by tachypacing. Cardiovascular function was assessed by pressure - dimension relationships in 10 conscious, chronically instrumented dogs (sonomicrometry/micromanometry), with or without cardiac failure. Cardiomyocyte K(ATP) channels were inhibited by HMR 1098, and data obtained under basal conditions, during epinephrine infusion to raise metabolic demand, during regional ischaemia, and with combined ischaemia+epinephrine. HMR 1098 had no effect on baseline cardiac function nor did it induce arrhythmia in normal or failing hearts. Epinephrine raised cardiac work 65% and oxygen consumption 55%, yet HMR 1098 had no functional effect in either heart condition. Regional ischaemia with or without epinephrine co-stimulation depressed regional and global function, yet both were also unaffected by HMR 1098. There was minimal arrhythmia without HMR 1098, and drug infusion did not alter this. Thus, myocyte-K(ATP) channels play a negligible role modulating intact in vivo cardiac contraction or arrhythmia in normal and failing heart with and without increased metabolic demand and/or regional ischaemia. This supports the feasibility of administering such agents to depressed hearts, despite underlying contractile and electrophysiologic abnormalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573174PMC
http://dx.doi.org/10.1038/sj.bjp.0704510DOI Listing

Publication Analysis

Top Keywords

hmr 1098
20
regional ischaemia
12
katp channel
8
katp channels
8
cardiac failure
8
metabolic demand
8
arrhythmia normal
8
normal failing
8
cardiac
5
hmr
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!