Expression of subunits for the cAMP-sensitive 'olfactory' cyclic nucleotide-gated ion channel in the cochlea: implications for signal transduction.

Brain Res Mol Brain Res

Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University, 261 Lande Medical Research Building, 540 E. Canfield, Detroit, MI 48201, USA.

Published: January 2002

Cyclic nucleotide-gated (CNG) ion channels have been implicated as functioning in sensory transduction and in second-messenger modulation of synaptic neurotransmitter release. The olfactory, cAMP-sensitive CNG ion channel in vivo is considered to comprise the pore-forming CNG2 subunit together with CNG5 and CNG4.3 modulatory subunits. The expression of these 'olfactory' CNG subunit transcripts in microdissected subfractions of the rat cochlea and hair cell libraries has been investigated with RT-PCR. Unmodified transcripts of CNG2 were detected in the organ of Corti, lateral wall and spiral ganglion subfractions. CNG5 message was found in both the sensory organ of Corti and the non-sensory lateral wall subfractions but not in the spiral ganglion subfraction. The CNG5 sequence obtained for the organ of Corti fraction encompassed 78% of the olfactory CNG5 cDNA sequence. CNG5 message has also been detected in an inner hair cell cDNA library. In the lateral wall, unmodified CNG5 sequence was observed as well as truncated versions of CNG5 transcripts, one of which was also found in the rat brain. The truncated versions were characterized by deletions that resulted in a shift in reading frame and the premature appearance of a stop codon. The 'olfactory' CNG4.3 cDNA was amplified from all three subfractions. Within the cochlea, CNG2 immunoreactivity was selectively distributed in a pattern similar to that of adenylyl cyclase type I. Immunoreactivity to CNG2 has been localized to stereocilia of inner hair cells. CNG5 immunoreactivity was associated with stereocilia and lateral plasma membranes of outer hair cells. We conclude that transcripts necessary for a functional cAMP-sensitive CNG ion channel are present in the cochlea resulting from combinations of CNG2 with CNG5 and CNG4.3. Further, the localization of CNG2 and CNG5 immunoreactivity to hair cell stereocilia suggests a role for cAMP-sensitive CNG channels in hair cell signal transduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0169-328x(01)00289-3DOI Listing

Publication Analysis

Top Keywords

hair cell
16
ion channel
12
cng ion
12
camp-sensitive cng
12
organ corti
12
lateral wall
12
cng5
10
cyclic nucleotide-gated
8
channel cochlea
8
signal transduction
8

Similar Publications

(-)-Epigallocatechin-3-gallate promotes the dermal papilla cell proliferation and migration through the induction of VEGFA.

Biochim Biophys Acta Mol Cell Res

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China. Electronic address:

Dermal papilla cells (DPCs) are crucial for the growth and development of hair follicles (HF). (-)-Epigallocatechin-3-gallate (EGCG) is the primary catechin identified in green tea, which has antioxidant effects and regulates cell activity. This study demonstrates that EGCG could promote the proliferation of DPCs.

View Article and Find Full Text PDF

miR-145b/AP2B1 Axis Contributes to Noise-induced Sensorineural Hearing Loss In a Male Mouse Model.

Cell Biochem Biophys

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.

Sensorineural hearing loss (SNHL) is an increasingly prevalent sensory disorder, but the underlying mechanisms remain poorly understood. Adaptor related protein complex 2 subunit beta 1 (AP2B1) has been indicated to be detectable in mature cochleae. Nonetheless, it is unclear whether AP2B1 is implicated in the progression of SNHL.

View Article and Find Full Text PDF

Stem cell therapy for bladder regeneration: A comprehensive systematic review.

Regen Ther

March 2025

Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.

View Article and Find Full Text PDF

Presbycusis, also referred to as age-related hearing loss, poses a substantial burden on both individuals and society. The hallmark of presbycusis is a progressive decrease in auditory sensitivity. Irreversible hearing loss occurs due to the limited regenerative capacity of spiral neurons and peripheral cochlear hair cells (HCs).

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!