Targeted acoustic contrast agents offer the potential for sensitive ultrasonic detection of pathologic tissues. We have previously reported the development of a ligand-targeted, lipid-encapsulated, liquid perfluorodichlorooctane ultrasonic contrast system with a small nominal particle size (approximately 250-nm diameter). Perfluorocarbon nanoparticles substantially increase reflectivity when bound to targeted surfaces, and we propose that this system can be approximated physically as a simple, thin layer, acoustic transmission line. In this study, we evaluate this model and compare the ultrasonic reflectivity of different perfluorocarbon formulations with widely varying acoustic impedances targeted to either nitrocellulose membranes or plasma thrombi in vitro. Five perfluorocarbons were investigated: perfluorohexane (PFH), perfluorooctane (PFO), perfluorooctyl bromide (PFOB), perfluorodichlorooctane (PFDCO), and perfluorodecalin (PFD). Ultrasonic reflection was measured by acoustic microscopy (17 to 35 MHz). Acoustic reflectivity was increased (P < 0.05) by all targeted perfluorocarbon formulations, and the magnitude of the contrast effect was inversely correlated with the perfluorocarbon acoustic impedance. PFH nanoparticles exhibited the greatest enhancement, and PFD nanoparticles showed the least. The acoustic transmission line model predicted well the relative differences in acoustic reflectivity and frequency dependence among the perfluorocarbon formulations. For future clinical applications, PFO nanoparticles may provide the best combination of acoustic enhancement, in vivo physical stability, and safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/58.981381 | DOI Listing |
Sensors (Basel)
January 2025
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.
This study investigates the potential of deploying a neural network model on an advanced programmable logic controller (PLC), specifically the Finder Opta™, for real-time inference within the predictive maintenance framework. In the context of Industry 4.0, edge computing aims to process data directly on local devices rather than relying on a cloud infrastructure.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Advanced Institute of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si 16229, Gyeonggi-do, Republic of Korea.
According to South Korea's Ministry of Employment and Labor, approximately 25,000 construction workers suffered from various injuries between 2015 and 2019. Additionally, about 500 fatalities occur annually, and multiple studies are being conducted to prevent these accidents and quickly identify their occurrence to secure the golden time for the injured. Recently, AI-based video analysis systems for detecting safety accidents have been introduced.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China.
This study addresses the challenges of electromagnetic interference and unstable signal transmission encountered by traditional sensors in detecting partial discharge (PD) within stator slots of large motors. A novel Extrinsic Fabry-Perot Interferometer (EFPI) sensor with a vibration-coupling air gap was designed to enhance the narrowband resonant detection sensitivity for PD ultrasonic signals by optimizing the diaphragm structure and coupling interface. The sensor features a quartz diaphragm with a thickness of 20 μM, an effective constrained radius of 0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hainan Institute, Zhejiang University, Sanya 572024, China.
In recent decades, Offshore Wind Turbines (OWTs) have become crucial to the clean energy transition, yet they face significant safety challenges due to harsh marine conditions. Key issues include blade damage, material corrosion, and structural degradation, necessitating advanced materials and real-time monitoring systems for enhanced reliability. Carbon fiber has emerged as a preferred material for turbine blades due to its strength-to-weight ratio, although its high cost remains a barrier.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.
Sheep wool is a precious, renewable raw material that is nowadays disregarded and wasted. To better use local sources of wool, it was used to manufacture tufted carpets. The coarse wool of mountain sheep was used to form a carpet pile layer, while the waste wool from the tannery industry was applied to form carpet underlayment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!