Nitric oxide (NO) plays an important role in the control of numerous vascular functions including basal Na+-K+-ATPase activity in arterial tissue. Hyperglycemia inhibits Na+-K+-ATPase activity in rabbit aorta, in part, through diminished bioactivity of NO. The precise mechanism(s) for such observations, however, are not yet clear. The purpose of this study was to examine the role of superoxide in modulating NO-mediated control of Na+-K+-ATPase in response to hyperglycemia. Rabbit aorta incubated with hyperglycemic glucose concentrations (44 mM) demonstrated a 50% reduction in Na+-K+-ATPase activity that was abrogated by superoxide dismutase. Hyperglycemia also produced a 50% increase in steady-state vascular superoxide measured by lucigenin-enhanced chemiluminescence that was closely associated with reduced Na+-K+-ATPase activity. Specifically, the hyperglycemia-induced increase in vascular superoxide was endothelium dependent, inhibited by L-arginine, and stimulated by N(omega)-nitro-L-arginine. Aldose reductase inhibition with zopolrestat also inhibited the hyperglycemia-induced increase in vascular superoxide. In each manipulation of vascular superoxide, a reciprocal change in Na+-K+-ATPase activity was observed. Finally, a commercially available preparation of Na+-K+-ATPase was inhibited by pyrogallol, a superoxide generator. These data suggest that hyperglycemia induces an increase in endothelial superoxide that inhibits the stimulatory effect of NO on vascular Na+-K+-ATPase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00343.2001 | DOI Listing |
J Membr Biol
January 2025
Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Brazil.
Cancer is a leading cause of death worldwide and its treatment is hampered by the lack of specificity and side effects of current drugs. Cardiotonic steroids (CTS) interact with Na/K-ATPase (NKA) and induce antineoplastic effects, but their narrow therapeutic window is key limiting factor. The synthesis of digitoxigenin derivatives with glycosidic unit modifications is a promising approach to develop more selective and effective antitumor agents.
View Article and Find Full Text PDFJ Nat Prod
January 2025
Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.
(-)-Cryptanoside A () was identified previously as a major cytotoxic component of the stems of collected in Laos, which mediates its activity by targeting Na/K-ATPase (NKA), with hydrogen bonds formed between its 11- and 4'-hydroxy groups and NKA being observed in its docking profile. In a continuing investigation, and its 17-epimer, (-)-17--cryptanoside A (), and the new (+)-2-hydroxyandrosta-4,6-diene-3-one-17-carboxylic acid () and the known (+)-2,21-dihydroxypregna-4,6-diene-3,20-dione or 2-hydroxy-6,7-didehydrocortexone () pregnane-type steroids were isolated from . In addition, (-)-11,4'-di--acetylcryptanoside A () has been synthesized from the acetylation of .
View Article and Find Full Text PDFGenes Brain Behav
February 2025
Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Laboratory of Structural Biology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil; Department of Veterinary, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. Electronic address:
Eugenol has pharmacological properties, but its impact on renal function is limitedly studied. Thus, this study evaluated the effects of eugenol at 10, 20, and 40 mg kg, administered via gavage for 60 days, on histological, biochemical, oxidative, and proteomic parameters in rat kidneys. Adult Wistar rats treated with 10 mg kg of eugenol had kidneys with low total antioxidant capacity, high nitric oxide content, and high percentual of blood vessels, with no damage to renal function or morphology.
View Article and Find Full Text PDFFront Pharmacol
December 2024
School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
Background: Salvianolic acid B (Sal B) is potentially the most valuable water-soluble active component in Salvia miltiorrhiza. Its chemical formula contains multiple phenolic hydroxyl groups, so it has a strong antioxidant capacity.
Objective: We aim to investigate the efficacy and the potential mechanism of Sal B in the treatment of acute ischemic stroke injury.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!