Background: The ATM gene encoding a putative protein kinase is mutated in ataxia-telangiectasia (A-T), an autosomal recessive disorder with a predisposition for cancer. Studies of A-T families suggest that female heterozygotes have an increased risk of breast cancer compared with noncarriers. However, neither linkage analyses nor mutation studies have provided supporting evidence for a role of ATM in breast cancer predisposition. Nevertheless, two recurrent ATM mutations, T7271G and IVS10-6T-->G, reportedly increase the risk of breast cancer. We examined these two ATM mutations in a population-based, case-control series of breast cancer families and multiple-case breast cancer families.
Methods: Five hundred twenty-five or 262 case patients with breast cancer and 381 or 68 control subjects, respectively, were genotyped for the T7271G and IVS10-6T-->G ATM mutations, as were index patients from 76 non-BRCA1/2 multiple-case breast cancer families. Linkage and penetrance were analyzed. ATM protein expression and kinase activity were analyzed in lymphoblastoid cell lines from mutation carriers. All statistical tests were two-sided.
Results: In case and control subjects unselected for family history of breast cancer, one case patient had the T7271G mutation, and none had the IVS10-6T-->G mutation. In three multiple-case families, one of these two mutations segregated with breast cancer. The estimated average penetrance of the mutations was 60% (95% confidence interval [CI] = 32% to 90%) to age 70 years, equivalent to a 15.7-fold (95% CI = 6.4-fold to 38.0-fold) increased relative risk compared with that of the general population. Expression and activity analyses of ATM in heterozygous cell lines indicated that both mutations are dominant negative.
Conclusion: At least two ATM mutations are associated with a sufficiently high risk of breast cancer to be found in multiple-case breast cancer families. Full mutation analysis of the ATM gene in such families could help clarify the role of ATM in breast cancer susceptibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jnci/94.3.205 | DOI Listing |
Ann Surg
January 2025
Wisconsin Surgical Outcomes Research Program, University of Wisconsin, Madison, WI.
Objective: To understand how breast cancer patients experience the surgical decision process and identify strategies surgeons can employ to empower patients to engage in decision-making.
Background: Patient engagement in decision-making is associated with improved patient outcomes. Although, some patients prefer that their healthcare provider drive the decision, the benefits of engaging in decision-making hold true even for patients who prefer to defer to their provider.
Cureus
December 2024
Pulmonary and Critical Care, Brody School of Medicine, East Carolina University, Greenville, USA.
Lung cancer is the third most prevalent cancer, following breast cancer in women and prostate cancer in men. However, it remains the leading cause of cancer-related mortality. As treatment options have advanced, the significance of accurate diagnosis has increased, enabling targeted and more personalized therapeutic treatments.
View Article and Find Full Text PDFFront Oncol
January 2025
The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States.
Introduction: Circulating tumor cells (CTCs) have attracted significant interest as a biomarker for cancer diagnosis. In this study, we judiciously constructed a recombinant MUC1-dependent adenovirus (rAdF35-MUC1) that can selectively replicate and overexpress copepod super green fluorescent proteins (copGFP) in MUC1-positive tumor cells to investigate its role in the detection of CTCs.
Methods: We conducted a comparative study between rAdF35-MUC1 and the existing hTERT-dependent adenovirus (rAdF35-hTERT).
JACS Au
January 2025
UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.
The mucin -glycan sialyl Tn antigen (sTn, Neu5Acα2-6GalNAcα1--Ser/Thr) is an antigen associated with different types of cancers, often linked with a higher risk of metastasis and poor prognosis. Despite efforts to develop anti-sTn antibodies with high specificity for diagnostics and immunotherapy, challenges in eliciting high-affinity antibodies for glycan structures have limited their effectiveness, leading to low titers and short protection durations. Experimental structural insights into anti-sTn antibody specificity are lacking, hindering their optimization for cancer cell recognition.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Cancer cells with high expression of aldehyde dehydrogenase 1A1 (ALDH1A1) are more resistant to chemotherapy, contribute to tumor progression, and are associated with poor clinical outcomes. ALDH1A1 plays a critical role in protecting cells from reactive aldehydes and, in the case of stem cells, regulates their differentiation through the retinoic acid signaling pathway. Despite the importance of this enzyme, methods to study ALDH1A1 high-expressing cancer cells in vivo remain limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!