Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73.

Cancer Res

Department of Cell Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.

Published: February 2002

p73, a recently identified gene highly homologous to p53, can transactivate p53 target genes and induce apoptosis. Here we report the identification of an NH(2)-terminal truncated isoform of human p73, DeltaNp73, which is capable of suppressing p53- and p73-dependent transactivation. We speculate that this suppression is achieved by competing for the DNA binding site in the case of p53 and by direct association in the case of TAp73. Expression of DeltaNp73 in cancer cell lines also inhibited suppressive activity of p53 and TAp73 in colony formation, implying possible involvement of DeltaNp73 in oncogenesis by inhibiting the tumor-suppressive function of p53 and TAp73. Also reported is the identification of TAp73eta, a new member of the COOH-terminal truncated isoform of p73 and tissue-specific expression of these isoforms, along with other previously identified p73 isoforms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

isoform human
8
human p73
8
truncated isoform
8
p53 tap73
8
p73
5
p53
5
oncogenic potential
4
deltanp73
4
potential deltanp73
4
deltanp73 newly
4

Similar Publications

Modulation of DAPK1 expression by its alternative splice variant DAPK1-215 in cancer.

J Transl Med

January 2025

Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.

Background: Death-Associated Protein Kinase 1 (DAPK1) family members are calcium/calmodulin-regulated serine/threonine kinases implicated in cell death, normal development, and human diseases. However, the regulation of DAPK1 expression in cancer remains unclear.

Methods: We examined the expression and functional impact of a DAPK1 splice variant, DAPK1-215, in multiple cancer cell lines.

View Article and Find Full Text PDF

Enhanced effect of the immunosuppressive soluble HLA-G2 homodimer by site-specific PEGylation.

Sci Rep

January 2025

Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.

Human leukocyte antigen (HLA)-G is a nonclassical HLA class I molecule that has an immunosuppressive effect mediated by binding to immune inhibitory leukocyte immunoglobulin-like receptors (LILR) B1 and LILRB2. A conventional HLA-G isoform, HLA-G1, forms a heterotrimeric complex composed of a heavy chain (α1-α3 domains), β2-microglobulin (β2m) and a cognate peptide. One of the other isoforms, HLA-G2, lacks a α2 domain or β2m to form a nondisulfide-linked homodimer, and its ectodomain specifically binds to LILRB2 expressed in human monocytes, macrophages, and dendritic cells.

View Article and Find Full Text PDF

The activation of the human interferon-inducible protein X (IFIX) isoform is associated with maintaining a stable cytoskeleton and inhibiting epithelial-mesenchymal transition (EMT). However, the mechanisms and pathways underlying IFIX-mediated oncogenesis are not well understood. In this study, we investigated the effects of IFIX overexpression and knockdown in CAL-27 and SCC-25 oral squamous cell carcinoma (OSCC) cells.

View Article and Find Full Text PDF

Exploring DMT: Endogenous Role and Therapeutic Potential.

Neuropharmacology

January 2025

Behavioral Neuroscience Lab, Institute of Psychology, SWPS University.

N,N-Dimethyltryptamine (DMT) is a naturally occurring amine and psychedelic compound, found in plants, animals, and humans. While initial studies reported only trace amounts of DMT in mammalian brains, recent findings have identified alternative methylation pathways and DMT levels comparable to classical neurotransmitters in rodent brains, calling for a re-evaluation of its biological role and exploration of this inconsistency. This study evaluated DMT's biosynthetic pathways, focusing on indolethylamine N-methyltransferase (INMT) and its isoforms, and possible regulatory mechanisms, including alternative routes of synthesis and how physiological conditions, such as stress and hypoxia influence DMT levels.

View Article and Find Full Text PDF

While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!