The proteins of the MARCKS (myristoylated alanine-rich C kinase substrate) family were first identified as prominent substrates of protein kinase C (PKC). Since then, these proteins have been implicated in the regulation of brain development and postnatal survival, cellular migration and adhesion, as well as endo-, exo- and phago-cytosis, and neurosecretion. The effector domain of MARCKS proteins is phosphorylated by PKC, binds to calmodulin and contributes to membrane binding. This multitude of mutually exclusive interactions allows cross-talk between the signal transduction pathways involving PKC and calmodulin. This review focuses on recent, mostly biophysical and biochemical results renewing interest in this protein family. MARCKS membrane binding is now understood at the molecular level. From a structural point of view, there is a consensus emerging that MARCKS proteins are "natively unfolded". Interestingly, domains similar to the effector domain have been discovered in other proteins. Furthermore, since the effector domain enhances the polymerization of actin in vitro, MARCKS proteins have been proposed to mediate regulation of the actin cytoskeleton. However, the recent observations that MARCKS might serve to sequester phosphatidylinositol 4,5-bisphosphate in the plasma membrane of unstimulated cells suggest an alternative model for the control of the actin cytoskeleton. While myristoylation is classically considered to be a co-translational, irreversible event, new reports on MARCKS proteins suggest a more dynamic picture of this protein modification. Finally, studies with mice lacking MARCKS proteins have investigated the functions of these proteins during embryonic development in the intact organism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222354 | PMC |
http://dx.doi.org/10.1042/0264-6021:3620001 | DOI Listing |
Front Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.
View Article and Find Full Text PDFCell Death Dis
December 2024
Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Regeneration of injured central nervous system (CNS) axons is highly restricted, leading to permanent neurological deficits. The myristoylated alanine-rich C-kinase substrate (MARCKS) is a membrane-associated protein kinase C (PKC) substrate ubiquitously expressed in eukaryotic cells, plays critical roles in development, brain plasticity, and tissues regeneration. However, little is known about the role of Marcks in CNS axon regeneration.
View Article and Find Full Text PDFIn vascular smooth muscle cells (VSMCs) and vascular endothelial cells (VECs), phosphatidylinositol 4,5-bisphosphate (PIP) acts as a substrate for phospholipase C (PLC)- and phosphoinositol 3-kinase (PI3K)-mediated signaling pathways and an unmodified ligand at ion channels and other macromolecules, which are key processes in the regulation of cell physiological and pathological phenotypes. It is envisaged that these distinct roles of PIP are achieved by PIP-binding proteins, which act as PIP buffers to produce discrete pools of PIP that permits targeted release within the cell. This review discusses evidence for the expression, cell distribution, and role of myristoylated alanine-rich C-kinase substrate (MARCKS), a PIP-binding protein, in cellular signaling and function of VSMCs.
View Article and Find Full Text PDFElife
December 2024
School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
Marcks and Marcksl1 are abundant proteins that shuttle between the cytoplasm and membrane to modulate multiple cellular processes, including cytoskeletal dynamics, proliferation, and secretion. Here, we performed loss- and gain-of-function experiments in to reveal the novel roles of these proteins in spinal cord development and regeneration. We show that Marcks and Marcksl1 have partly redundant functions and are required for normal neurite formation and proliferation of neuro-glial progenitors during embryonic spinal cord development and for its regeneration during tadpole stages.
View Article and Find Full Text PDFCardiovasc Toxicol
November 2024
Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
Diabetic cardiomyopathy (DCM) is a common and severe complication of Diabetes mellitus (DM). Dapagliflozin (DAPA) is an oral anti-diabetic drug worldwide for the treatment of type 2 DM. However, the action and mechanism of DAPA in cardiac fibrosis during DCM remain vague.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!