Concentration effects in myoglobin-catalyzed peroxidation of linoleate.

J Agric Food Chem

Food Chemistry, Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.

Published: February 2002

The concentration of the free fatty acid anion linoleate was found to be important for the pro-oxidative activity of metmyoglobin, MbFe(III), and for mixtures of metmyoglobin and hydrogen peroxide, MbFe(III)/H(2)O(2), to yield perferrylmyoglobin, (*)MbFe(IV)=O, whereas for ferrylmyoglobin, MbFe(IV)=O, no concentration effect was noted as studied in linoleate emulsions (pH 7.4 and 25 degrees C). Determination of conjugated dienes using second-derivative absorption spectroscopy, changes in Soret band absorbance, and spin-trapping ESR spectroscopy with alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (POBN) as the spin trap were used to evaluate the pro-oxidative activity of myoglobins. At a linoleate (LA)/heme protein (HP) ratio of 100, no MbFe(III)-induced linoleate peroxidation was observed, as MbFe(III) was converted to its non-pro-oxidative low-spin derivative, hemichrome, independently of the presence of H(2)O(2). At higher LA/HP ratios, linoleate peroxidation was initiated by the addition of MbFe(III), both in the presence and in the absence of H(2)O(2). This proceeded with denaturation of MbFe(III), as followed by changes in Soret absorption band, which most probably release or expose the heme group to the environment and thereby permit hematin-induced lipid peroxidation. The obtained results show that the mechanism by which MbFe(IV)=O initiates linoleate peroxidation is different from MbFe(III)- and MbFe(III)/H(2)O(2)-initiated linoleate peroxidation. The shift in mechanism between heme protein cleavage of lipid hydroperoxides and hematin-induced lipid peroxidation is discussed in relation to oxidative progress in biological systems and muscle-based foods.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf011169eDOI Listing

Publication Analysis

Top Keywords

linoleate peroxidation
16
linoleate
8
pro-oxidative activity
8
changes soret
8
hematin-induced lipid
8
lipid peroxidation
8
peroxidation
7
concentration effects
4
effects myoglobin-catalyzed
4
myoglobin-catalyzed peroxidation
4

Similar Publications

The antioxidant extracts considered a very important food additive which promoting the protection of lipid and prolong the shelf life of food products. The aim of this investigation was decrease the time of extraction of hibiscus leaves extract (HLE) and olive leaves extract (OLE) from 48 h to only 6 h without reducing efficiency of these extracts. HPLC assay, scavenging radical activity by DPPH˙ (IC), inhibition lipid peroxidation by both β-Carotene/Linoleic Acid Bleaching (βCB) and Thiobarbituric Acid Reactive Substances (TBARs) assays, antibacterial and antifungal activities measured for different concentrations of ethanolic extracts by conventional extraction (CE) and difference in pressure extraction (DPE) methods, and the results shown a considerable in mean difference ( < 0.

View Article and Find Full Text PDF

Oil extracted from tiger nut is a good, edible source owing to its richness in unsaturated fatty acids. This study investigated the effects of the refining processes on the flavor components of crude tiger nut oil by GC-MS and focused on the thermal stability of the refined oil under high-temperature conditions. Three different refining processes were evaluated: citric acid-assisted hydration degumming, alkali deacidification and bleaching.

View Article and Find Full Text PDF

Consumers include pumpkin seeds in their diet as a snack in raw form or minimally processed by roasting. This process enables the seeds to develop a characteristic aroma and color. Herbs and spices are also distinguished by a pleasant and delicate aroma.

View Article and Find Full Text PDF

Spectroscopic techniques and molecular docking were employed to explore the binding mechanism and structural characteristics of β-lactoglobulin (β-lg) with linoleic acid. The research revealed that the interaction between β-lg and linoleic acid was primarily governed by static quenching. The attachment of linoleic acid to β-lg happened naturally via hydrophobic forces.

View Article and Find Full Text PDF

Linoleic acid alleviates aluminum toxicity by modulating fatty acid composition and redox homeostasis in wheat (Triticum aestivum) seedlings.

J Hazard Mater

January 2025

MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Lipids, as key components of biological membranes, play vital roles in sensing and initiating plant responses to various abiotic stresses. Here, the alteration of membrane fatty acids in wheat roots under Al stress was investigated using two genotypes differing in Al tolerance, and the role of linoleic acid in Al tolerance was comprehensively explored. Significant differences in the fatty acid profiles were observed, with increased linoleic acid accumulation in the Al-tolerant genotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!