AI Article Synopsis

Article Abstract

Introduction: The polymorphic cytochrome P450 enzyme 2C9 (CYP2C9) catalyses the metabolism of many drugs including S-warfarin, acenocoumarol, phenytoin, tolbutamide, losartan and most of the non-steroidal anti-inflammatory drugs. Diclofenac is metabolised to 4'-hydroxy (OH), the major diclofenac metabolite, 3'-OH and 3'-OH-4'-methoxy metabolites by CYP2C9. The aim of the present study was to clarify the impact of the CYP2C9 polymorphism on the metabolism of diclofenac both in vivo and in vitro.

Subjects, Materials And Methods: Twenty healthy volunteers with different CYP2C9 genotypes [i.e. CYP2C9*1/ *1 (n = 6), *1/*2 (n = 3), *1,/*3 (n = 5), *2/*3 (n = 4), *21*2 (n = 1), *31*3 (n = 1)] received a single 50-mg oral dose of diclofenac. Plasma pharmacokinetics [peak plasma concentration (Cmax), half-life (t 1/2) and area under the plasma concentration-time curve (AUCtotal)] and urinary recovery of diclofenac and its metabolites were compared between the genotypes. Diclofenac 4'-hydroxylation was also analysed in vitro in 16 different samples of genotyped [i.e. CYP2C9*1/*1 (n = 7), *1/*2 (n=2), *1/*3 (n = 2), *2/*3 (n = 2), *2/*2 (n = 2), *31/*3 (n = 1)] human liver microsomes.

Results: Within each genotype group, a high variability was observed in kinetic parameters for diclofenac and 4'-OH-diclofenac (6- and 20-fold, respectively). No significant differences were found between the different genotypes either in vivo or in human liver microsomes. No correlation was found between the plasma AUC ratio of diclofenac/4'-OH-diclofenac and that of losartan/ E-3174, previously determined in the same subjects.

Conclusion: No relationship was found between the CYP2C9 genotype and the 4'-hydroxylation of diclofenac either in vivo or in vitro. This, together with the lack of correlation between losartan oxidation and diclofenac hydroxylation in vivo raises the question about the usefulness of diclofenac as a CYP2C9 probe.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00228-001-0376-7DOI Listing

Publication Analysis

Top Keywords

diclofenac vivo
12
diclofenac
11
cyp2c9 genotype
8
metabolism diclofenac
8
vivo vitro
8
*1/*3 *2/*3
8
human liver
8
cyp2c9
6
vivo
5
role cyp2c9
4

Similar Publications

Background: Inflammation-induced oxidative stress is a pathophysiological mechanism of inflammatory diseases. Treatments targeting oxidative stress can reduce inflammatory tissue damage.

Objectives: This study aimed to conduct phytochemical analysis and evaluate the antioxidant effects of the hydroalcoholic extract of blossoms () and rhizomes ().

View Article and Find Full Text PDF

The goal of this study is to assess the potential advantages of utilising methotrexate (MTH), and mangiferin (MFR), in nanoparticulate configuration which is transethosomes (TRS), which could result in increased stability and solubility, as well as improved infiltration into the arthritic tissues under investigation. The synthesised MTH-MFR-TRS demonstrated a particle size of 151.7 nm and a PDI of 0.

View Article and Find Full Text PDF

Development, and evaluation of film forming solutions for transdermal drug delivery of Zaltoprofen.

J Biomater Sci Polym Ed

December 2024

Department of Pharmaceutics, Dr. Prabhakar B Kore Basic Science Research Center, Off-campus, KLE College of Pharmacy (A constituent unit of KAHER-Belagavi), Bengaluru, Karnataka, India.

Zaltoprofen (ZAL) is a non-steroidal anti-inflammatory drug (NSAID) with a short half-life (∼2.8 h) due to extensive first pass metabolism. In this context, 16 different polymeric film forming solutions (PFFS) of ZAL were developed using different grades of Eudragits, Polyvinylpyrrolidones, Kollicoat MAE 100 P and Hydroxypropyl cellulose as film formers, and polyethylene glycol 400 as a plasticizer in equal parts of ethanol and isopropyl alcohol used as solvents.

View Article and Find Full Text PDF

Background: Schott and Hook.f. are two commonly found vegetable species of the genus , found mainly in the Asian region.

View Article and Find Full Text PDF
Article Synopsis
  • The Indian Coffee Plum (Flacourtia jangomas) is a medicinal plant known for its bioactive compounds and potential therapeutic benefits, prompting research into its extracts from bark for medical applications.
  • The study involved extracting phytochemicals using methanol, conducting screenings, and comparing the biological activities of the extracts, revealing the presence of new compounds like methyl caffeate and flacourtin.
  • Results showed the extract has strong antioxidant and cytotoxic properties, pain relief effects, and moderate thrombolytic action, but limited antibacterial and antifungal activities, indicating a need for further research on its bioactive compounds.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!