Mutations in PRKAG2, the gene for the gamma 2 regulatory subunit of AMP-activated protein kinase, cause cardiac hypertrophy and electrophysiologic abnormalities, particularly preexcitation (Wolff-Parkinson-White syndrome) and atrioventricular conduction block. To understand the mechanisms by which PRKAG2 defects cause disease, we defined novel mutations, characterized the associated cardiac histopathology, and studied the consequences of introducing these mutations into the yeast homologue of PRKAG2, Snf4. Although the cardiac pathology caused by PRKAG2 mutations Arg302Gln, Thr400Asn, and Asn488Ile include myocyte enlargement and minimal interstitial fibrosis, these mutations were not associated with myocyte and myofibrillar disarray, the pathognomonic features of hypertrophic cardiomyopathy caused by sarcomere protein mutations. Instead PRKAG2 mutations caused pronounced vacuole formation within myocytes. Several lines of evidence indicated these vacuoles were filled with glycogen-associated granules. Analyses of the effects of human PRKAG2 mutations on Snf1/Snf4 kinase function demonstrated constitutive activity, which could foster glycogen accumulation. Taken together, our data indicate that PRKAG2 mutations do not cause hypertrophic cardiomyopathy but rather lead to a novel myocardial metabolic storage disease, in which hypertrophy, ventricular pre-excitation and conduction system defects coexist.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC150860PMC
http://dx.doi.org/10.1172/JCI14571DOI Listing

Publication Analysis

Top Keywords

prkag2 mutations
16
hypertrophic cardiomyopathy
12
mutations
10
storage disease
8
mutations prkag2
8
prkag2
7
constitutively active
4
active amp
4
amp kinase
4
kinase mutations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!