Background And Purpose: Conventional imaging techniques cannot be used to unambiguously and reliably differentiate malignant from benign vertebral compression fractures. Our hypothesis is that these malignant and benign vertebral lesions can be better distinguished on the basis of tissue apparent diffusion coefficients (ADCs). The purpose of this study was to test this hypothesis by using a quantitative diffusion imaging technique.

Methods: Twenty-seven patients with known cancer and suspected metastatic vertebral lesions underwent 1.5-T conventional T1-weighted, T2-weighted, and contrast-enhanced T1-weighted imaging to identify the lesions. Diffusion-weighted images of the areas of interest were acquired by using a fast spin-echo diffusion pulse sequence with b values of 0-250 s/mm(2). The abnormal regions on the diffusion-weighted images were outlined by using the conventional images as guides, and the ADC values were calculated. On the basis of pathologic results and clinical findings, the cases were divided into two categories: benign compression fractures and metastatic lesions. The ADC values for each category were combined and plotted as histograms; this procedure was followed by statistical analysis.

Results: The patient group had 12 benign fractures and 15 metastases. The mean ADC values, as obtained from the histograms, were (1.9 +/- 0.3) x 10(-4) mm(2)/s and (3.2 +/- 0.5) x 10(-4) mm(2)/s for metastases and benign fractures, respectively.

Conclusion: Our results indicate that quantitative ADC mapping, instead of qualitative diffusion-weighted imaging, can provide valuable information in differentiating benign vertebral fractures from metastatic lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7975517PMC

Publication Analysis

Top Keywords

compression fractures
12
benign vertebral
12
adc values
12
metastatic vertebral
8
vertebral compression
8
quantitative diffusion
8
diffusion imaging
8
malignant benign
8
vertebral lesions
8
diffusion-weighted images
8

Similar Publications

Objective: Aim: Study the mechanism of interaction between the 'sacroiliac joint - screw' system and determine the optimal parameters of the stabilizing structure, the strength of the system connection through computer modeling, and anatomical-biomechanical experiment.

Patients And Methods: Materials and Methods: The optimal parameters of the stabilizing structure for the sacroiliac joint were calculated using software package MathCAD. To validate the results of the numerical modeling, corresponding investigations of mechanical characteristics and determination of stiffness of the studied systems were conducted by an upgraded testing stand, TIRAtest-2151.

View Article and Find Full Text PDF

Background: The aim of study was to biomechanically compare the fixation of Jones fracture using headless cannulated screw, tension band, and two Kirschner wires.

Methods: A total of 60 fourth-generation, fifth metatarsal synthetic bone models were divided into three groups according to the fixation techniques. A vertical load, oriented from plantar to dorsal and lateral to medial, was applied to the metatarsal specimen that were potted with molding material.

View Article and Find Full Text PDF

Finite element modeling of clavicle fracture fixations: a systematic scoping review.

Med Biol Eng Comput

January 2025

Department of Orthopaedics, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.

Finite element analysis has become indispensable for biomechanical research on clavicle fractures. This review summarized evidence regarding configurations and applications of finite element analysis in clavicle fracture fixation. Seventeen articles involving 22 clavicles were synthesized from CINAHL, Embase, IEEE Xplore, PubMed, Scopus, and Web of Science databases.

View Article and Find Full Text PDF

Reverse Hill-Sachs lesions (RHSL) are common complications associated with posterior shoulder dislocations and represent a significant challenge for preserving joint stability and function. If untreated, these compression fractures of the anteromedial humeral head can compromise the integrity of the joint, predisposing patients to recurrent instability and arthropathy. While various treatment modalities exist, achieving an anatomic reduction of the defect while preserving the articular cartilage remains a desirable outcome, particularly in acute settings.

View Article and Find Full Text PDF

Background: Transfemoral osseointegrated prostheses, like other uncemented prostheses experience the risk of aseptic loosening and post-operative periprosthetic fractures, with an incidence between 3% and 30%. To date, however, osseointegrated off-the-shelf prostheses are manufactured in a limited number of sizes, and some patients do not meet the strict eligibility criteria of commercial devices. A customized osseointegrated stem was developed and a pre-clinical in vitro investigation of the stem was performed, to evaluate its biomechanical performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!