Members of the ecto-nucleoside triphosphate diphosphohydrolase (eNTPDase) family exhibit distinctive substrate specificities, but how such specificities are achieved by enzymes with identical putative catalytic domains is unknown. Previously we showed that H59G substitution changes CD39 from an apyrase to an adenosine diphosphatase (ADPase) in a manner that depends on intact associations of both transmembrane domains with the membrane. Here we show that the extracellular domain of CD39L1 ecto-adenosine triphosphatase (ecto-ATPase) has the same 3:1 ATP:ADP hydrolysis ratio as the extracellular domain of CD39, suggesting that the transmembrane domains are required to confer the native substrate specificities on each enzyme. As in CD39, H50G substitution has little effect on the activity of the CD39L1 extracellular domain or solubilized monomers. However, H50G substitution diminishes both ATPase and ADPase activities of native CD39L1, in contrast to its selective effect on ATPase activity in CD39, suggesting that the transmembrane domains confer different ADP hydrolysis mechanisms on CD39 and CD39L1. We then show that the transmembrane domains of CD39L1 can substitute for those of CD39 in conferring native CD39 substrate specificity and regulation of H59 but that the transmembrane domains of CD39 confer neither CD39 nor CD39L1 properties on the CD39L1 extracellular domain. These results suggest that non-apyrase conserved region residues in the extracellular domain contain the information specifying CD39 native properties but have a nonspecific requirement for two transmembrane domains to manifest the information.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi015563hDOI Listing

Publication Analysis

Top Keywords

transmembrane domains
28
extracellular domain
20
substrate specificities
12
cd39 cd39l1
12
cd39
11
domains confer
8
hydrolysis mechanisms
8
mechanisms cd39
8
cd39l1
8
domain cd39
8

Similar Publications

Unlabelled: Endocytic recycling of transmembrane proteins is essential to cell signaling, ligand uptake, protein traffic and degradation. The intracellular domains of many transmembrane proteins are ubiquitylated, which promotes their internalization by clathrin-mediated endocytosis. How might this enhanced internalization impact endocytic uptake of transmembrane proteins that lack ubiquitylation? Recent work demonstrates that diverse transmembrane proteins compete for space within highly crowded endocytic structures, suggesting that enhanced internalization of one group of transmembrane proteins may come at the expense of other groups.

View Article and Find Full Text PDF

Transcriptome-Wide Association Study of Metabolic Dysfunction-Associated Steatotic Liver Disease Identifies Relevant Gene Signatures.

Turk J Gastroenterol

December 2024

Department of Emergency Medicine, Shandong University, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Qingdao, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered the most widespread chronic liver condition globally. Genome-wide association studies (GWAS) have pinpointed several genetic loci correlated to MASLD, yet the biological significance of these loci remains poorly understood. Initially, we applied Functional Mapping and Annotation (FUMA) to conduct a functional annotation of the MASLD GWAS summary statistics, which included data from 3242 cases and 707 631 controls.

View Article and Find Full Text PDF

NPC1 controls TGFBR1 stability in a cholesterol transport-independent manner and promotes hepatocellular carcinoma progression.

Nat Commun

January 2025

State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.

Niemann-Pick disease type C protein 1 (NPC1), classically associated with cholesterol transport and viral entry, has an emerging role in cancer biology. Here, we demonstrate that knockout of Npc1 in hepatocytes attenuates hepatocellular carcinoma (HCC) progression in both DEN (diethylnitrosamine)-CCl induced and MYC-driven HCC mouse models. Mechanistically, NPC1 significantly promotes HCC progression by modulating the TGF-β pathway, independent of its traditional role in cholesterol transport.

View Article and Find Full Text PDF

Here, we report the case of a 29-year-old male with classic Pelizaeus-Merzbacher disease (PMD) harboring the PLP1 variant NM_000533.5:c.62 C > T, leading to an NP_000524.

View Article and Find Full Text PDF

Metabotropic GABA Receptor Activation Induced by G Protein Coupling.

J Am Chem Soc

January 2025

Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.

G protein-coupled receptors (GPCRs) play central roles in regulating cellular responses through heterotrimeric G proteins (GP). Extensive studies have elucidated the complex cellular signaling mediated by GPCRs that accompany dynamic conformational changes upon activation. However, there has been less focus on the role of the GP on the activation process, particularly for class C GPCRs that function as obligate dimers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!