A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase. | LitMetric

Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase.

Biochemistry

Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA.

Published: February 2002

Residues 257-291 of the Vibrio harveyi bacterial luciferase alpha subunit comprise a highly conserved, protease-labile, disordered loop region, most of which is unresolved in the previously determined X-ray structures of the native enzyme. This loop region has been shown to display a time- dependent proteolysis resistance upon single catalytic turnover and was postulated to undergo conformational changes during catalysis ([AbouKhair, N. K., Ziegler, M. M., and Baldwin, T. O. (1985) Biochemistry 24, 3942-3947]. To investigate the role of this region in catalysis, we have performed site-specific mutations of different conserved loop residues. In comparison with V(max) and V(max)/K(m,flavin) of the native luciferase, the bioluminescence activities of alphaG284P were decreased to 1-2% whereas those of alphaG275P and alphaF261D were reduced by 4-6 orders of magnitude. Stopped-flow results indicate that both alphaG275P and alphaF261D were able to form the 4a-hydroperoxy-FMN intermediate II but at lower yields. Both mutants also had enhanced rates for the intermediate II nonproductive dark decay and significantly compromised abilities to oxidize the decanal substrate. Additional mutations were introduced into the alphaG275 and alphaF261 positions, and the activities of the resulting mutants were characterized. Results indicate that the torsional flexibility of the alphaG275 residue and the bulky and hydrophobic nature of the alphaF261 residue were critical to the luciferase activity. Our results also support a functional role for the alpha subunit unstructured loop itself, possibly by serving as a mobile gating mechanism in shielding critical intermediates (including the excited flavin emitter) from exposure to medium.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi011958pDOI Listing

Publication Analysis

Top Keywords

unstructured loop
8
vibrio harveyi
8
harveyi bacterial
8
bacterial luciferase
8
alpha subunit
8
loop region
8
alphag275p alphaf261d
8
loop
5
functional roles
4
roles conserved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!