Integration host factor (IHF) is a heterodimeric Escherichia coli protein that plays essential roles in a variety of cellular processes including site-specific recombination, transcription, and DNA replication. The IHF-DNA interface extends over three helical turns and includes sequential minor groove contacts that present strong, sequence specific protection patterns against hydroxyl radical cleavage. Synchrotron X-ray footprinting has been used to follow the kinetics of formation of DNA-protein contacts in the IHF-DNA complex with single base-pair spatial, and millisecond time, resolution. The three sites of IHF protection on the DNA develop with similar time-dependence, indicating that sequence specific binding and bending occur concertedly. Two distinct phases are observed in the association process. The first "burst" phase is characterized by a rate that is greater than diffusion limited (>10(10) s(-1) M(-1)) and the second phase is on the order of diffusion controlled (approximately 10(8) M(-1) s(-1)). The overall kinetics of association become faster with increasing IHF concentration showing that complex formation is second-order with protein. The rate of association is maximal between 100 and 200 mM KCl decreasing at higher and lower concentrations. The rate of IHF dissociation from site-specifically bound DNA increases monotonically as KCl concentration is increased. The dissociation progress curves are biphasic with the amplitude of the first phase dependent upon competitor DNA concentration. These results are the first analysis by synchrotron footprinting of the fast kinetics of a protein-DNA interaction and suggest that IHF binds its specific site through a multiple-step mechanism in which the first step is facilitated diffusion along the length of the duplex followed by subsequent binding and bending of the DNA in a concerted manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.2001.5303 | DOI Listing |
Nucleic Acids Res
January 2025
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States.
What if an experiment could combine the power of cycloaddition and cross-coupling with the formation of an aromatic molecule in a single collision? Crossed molecular beam experiments augmented with electronic structure and statistical calculations provided compelling evidence on a novel radical route involving 1,3-butadiynyl (HCCCC; X∑) radicals synthesizing (substituted) arylacetylenes in the gas phase upon reactions with 1,3-butadiene (CHCHCHCH; XA) and 2-methyl-1,3-butadiene (isoprene; CHC(CH)CHCH; XA'). This elegant mechanism merges two previously disconnected concepts of cross-coupling and cycloaddition-aromatization in a single collision event via the formation of two new C(sp)-C(sp) bonds and bending the 180° moiety of the linear 1,3-butadiynyl radical out of the ordinary by 60° to 120°. In addition to its importance to fundamental organic chemistry, this unconventional mechanism links two previously separated routes of gas-phase molecular mass growth processes of polyacetylenes and polycyclic aromatic hydrocarbons (PAHs), respectively, in low-temperature environments such as in cold molecular clouds like the Taurus Molecular Cloud (TMC-1) and in hydrocarbon-rich atmospheres of planets and their moons such as Titan, which revises the established understanding of low-temperature molecular mass growth processes in the Universe.
View Article and Find Full Text PDFQuant Plant Biol
November 2024
Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan.
Plant postures are affected by environmental stimuli. When the gravitational direction changes, the mutants () and () exhibit aberrantly enhanced organ bending. Whether their phenotypes are due to the same mechanism is unknown.
View Article and Find Full Text PDFUnlabelled: Cytoplasmic proteins must recruit to membranes to function in processes such as endocytosis and cell division. Many of these proteins recognize not only the chemical structure of the membrane lipids, but the curvature of the surface, binding more strongly to more highly curved surfaces, or 'curvature sensing'. Curvature sensing by amphipathic helices is known to vary with membrane bending rigidity, but changes to lipid composition can simultaneously alter membrane thickness, spontaneous curvature, and leaflet symmetry, thus far preventing a systematic characterization of lipid composition on such curvature sensing through either experiment or simulation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; China Advanced Flame Retardant Engineering Technology Research Center for Light Industry, Beijing 100048, China; Engineering laboratory for halogen-free flame retardants for polymer materials in the petroleum and chemical industry, Beijing 100048, China.
In this study, cellulose nanofibers (CNFs) were utilized as a synergistic agent, and combined with phytic acid arginine salt (PaArg) via blending and bonding. The effects of these different binding techniques of CNFs and PaArg on the flame retardant and mechanical properties of poly (butylene succinate) (PBS) were explored. The results indicated that both blended and bonded CNFs and PaArg enabled PBS composites to achieve a UL 94 V-0 rating, with the limiting oxygen index (LOI) value of the composite exceeding 28 %.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!