Real samples were used for PLS model calibration and validation steps, showing that this approach can be of value in preventing deviations in the results caused by the matrix effects for the simultaneous spectrophotometric determination of aluminum and iron in plant extracts. One hundred UV-vis spectra, obtained from samples of the 1997 to 2000 International Plant-Analytical Exchange (IPE) program (The Netherlands), were used for model development, with ICP-AES aluminum and iron determinations as reference values for model calculation. The plant extracts were analyzed both by ICP-AES and by the PLS models developed in this work, using calibrations with both aqueous standard solutions and with real sample extracts. In addition, since the use of smaller calibration sets could be of value in reducing both the cost and the time of analysis, sets with fewer calibration samples were also investigated, with the help of the Kennard and Stone algorithm for sample selection. Comparison of the predictability of the best model obtained with each calibration set was made using the ratio of their relative root mean square error (%RMSEV) for samples in the validation set, for aluminum or iron determinations, and were compared against F-test tabulated values. For all the models developed with real samples, the differences in the %RMSEV values for the aluminum or iron determinations were found not to be statistically significant, at a confidence level of 95%. Although it was observed that the aluminum, but not the iron, determinations with the PLS 2 model prepared with aqueous standards tend to be slightly lower than the ICP-AES determinations, this model has a good global prediction ability, as observed through the correlation curves presented, and can be used for screening determinations or for other agricultural purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b109855c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!