Through batch equilibrium experiments under the conditions of temperature 25 degrees C, pH values of 2.7, 5.3 and 6.1, the p-chlorophenol (4-cp) adsorption to biofilm components was investigated in this study. The contributions of biofilm components to 4-cp adsorption were discussed by comparing four adsorption systems, i.e. 4-cp adsorbed by model suspended particulate matter (kaolin) with biofilm coating, bacteria, bacterial exopolysaccharide (EPS) and kaolin, respectively. Langmuir and Freundlich isotherm equations were used to evaluate the experiment data. All the four adsorptions fitted for the two equations. Equilibrium isotherms were obtained for 4-cp adsorption on different adsorbents. The kinetic characteristics of 4-cp adsorption by biofilm components and the effect of pH on the kinetic process were investigated. The time to reach the highest adsorption amount and near equilibrium state in the four systems was different. The 4-cp adsorption by kaolin with biofilm coating reached near equilibrium at 60 min at pH 6.1. The 4-cp adsorption by EPS and kaolin reached near equilibrium at 150 and 180 min, respectively. But the 4-cp adsorption by bacteria showed no evident near equilibrium during 3 h in the experiment. The impact of pH value on the adsorption was also examined. The adsorption amount slightly increased with increasing pH from 2.7 to 6.1 for the adsorption systems of bacterial EPS and kaolin, but it slightly decreased in the systems of kaolin with biofilm coating and bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0043-1354(01)00267-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!