A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protein kinase A cascade regulates quantal release dispersion at frog muscle endplate. | LitMetric

Protein kinase A cascade regulates quantal release dispersion at frog muscle endplate.

J Physiol

State Medical University, Butlerov st. 49, Kazan, Russian Federation and Institute of Biochemistry and Biophysics, Russian Academy of Sciences, PO Box 30, Kazan, Russian Federation.

Published: February 2002

Uniquantal endplate currents (EPCs) were recorded simultaneously at the proximal, central and distal parts of the frog neuromuscular synapse, and their minimal synaptic latencies, latency dispersions and sensitivity to noradrenaline, cAMP and protein kinase A inhibition were measured. The latency dispersion was highest in the proximal part (P90 = 1.25 ms); it decreased to P90 = 0.95 ms in the central part and to P90 = 0.75 ms (60 % of the proximal part) in the distal part. In the proximal parts of the long neuromuscular synapse, stimulation-evoked EPCs with long release latencies were eliminated when the intracellular cAMP was increased by beta1 activation by noradrenaline, by the permeable analogue db-cAMP, by activation of adenylyl cyclase or by inhibition of cAMP hydrolysis. This makes the evoked release more compact, and the amplitude of the reconstructed multiquantal currents increases. Protein kinase A is a target of this regulation, since a specific inhibitor, Rp-cAMP, prevents the action of cAMP in the proximal parts and increases the occurrence of long-latency events in the distal parts of the synapse. Our results show that protein kinase A is involved in the timing of quantal release and can be regulated by presynaptic adrenergic receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290098PMC
http://dx.doi.org/10.1113/jphysiol.2001.012752DOI Listing

Publication Analysis

Top Keywords

protein kinase
16
quantal release
8
distal parts
8
neuromuscular synapse
8
proximal parts
8
proximal
5
protein
4
kinase cascade
4
cascade regulates
4
regulates quantal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!