Interactions between multiple rhythm generators produce complex patterns of oscillation in the developing rat spinal cord.

J Neurophysiol

Department of Physiology, Center for Neuroscience, University of Wisconsin Medical School, 1300 University Ave., Madison, WI 53706, USA.

Published: February 2002

Neural networks capable of generating coordinated rhythmic activity form at early stages of development in the spinal cord. In this study, voltage-imaging techniques were used to examine the spatiotemporal pattern of rhythmic activity in transverse slices of lumbar spinal cord from embryonic and neonatal rats. Real-time images were recorded in slices stained with the voltage-sensitive fluorescent dye RH414 using a 464-element photodiode array. Fluorescence signals showed spontaneous voltage oscillations with a frequency of 3 Hz. Simultaneous recordings of fluorescence and extracellular field potential demonstrated that the two signals oscillated with the same frequency and had a distinct phase relationship, indicating that the fluorescence changes represented changes in transmembrane potentials. The oscillations were reversibly blocked by cobalt (1 mM), indicating a dependence on Ca(2+) influx through voltage-gated Ca(2+) channels. Extracellular field potentials revealed oscillations with the same frequency in both stained and unstained slices. Oscillations were apparent throughout a slice, although their amplitudes varied in different regions. The largest amplitude oscillations were produced in the lateral regions. To examine the spatial organization of rhythm-generating networks, slices were cut into halves and quarters. Each fragment continued to oscillate with the same frequency as intact slices but with smaller amplitudes. This finding suggested that rhythm-generating networks were widely distributed and did not depend on long-range projections. In slices from neonatal rats, the oscillations exhibited a complex spatiotemporal pattern, with depolarizations alternating between mirror locations in the right and left sides of the cord. Furthermore, within each side depolarizations alternated between the lateral and medial regions. This medial-lateral pattern was preserved in hemisected slices, indicating that pathways intrinsic to each side coordinated this activity. A different pattern of oscillation was observed in slices from embryos with synchronous 3-Hz oscillations occurring in limited regions. Our study demonstrated that rhythm generators were distributed throughout transverse sections of the lumbar spinal cord and exhibited a complex spatiotemporal pattern of coordinated rhythmic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00276.2001DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
rhythmic activity
12
spatiotemporal pattern
12
rhythm generators
8
coordinated rhythmic
8
slices
8
lumbar spinal
8
neonatal rats
8
oscillations frequency
8
extracellular field
8

Similar Publications

Radiofrequency ablation (RFA) is an interventional procedure that has been used to treat chronic back pain for over 50 years; this unique case report demonstrates the effectiveness of pulsed radiofrequency ablation (PRFA) on the dorsal root ganglion (DRG) in the treatment of chronic radicular pain (Russo et al., 2021, J Pain Res, 14, 3897). The RFA provides pain relief by using thermal energy to disrupt peripheral nerves carrying nociceptive signals back to the central nervous system (Abd-Elsayed et al.

View Article and Find Full Text PDF

The hypothalamus is the gray matter of the ventral portion of the diencephalon. The hypothalamus is the higher center of the autonomic nervous system and is involved in the regulation of various homeostatic mechanisms. It also modulates respiration by facilitating the respiratory network.

View Article and Find Full Text PDF

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Background: The associations of early-onset coronary heart disease (CHD) and genetic susceptibility with incident dementia and brain white matter hyperintensity (WMH) remain unclear. Elucidation of this problem could promote understanding of the neurocognitive impact of early-onset CHD and provide suggestions for the prevention of dementia.

Objectives: This study aimed to investigate whether observed and genetically predicted early-onset CHD were related to subsequent dementia and WMH volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!