Structural characterization of bacteriophage M13 solubilization by amphiphiles.

Biochim Biophys Acta

Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands.

Published: January 2002

The structural properties of bacteriophage M13 during disassembly were studied in different membrane model systems, composed of a homologue series of the detergents sodium octyl sulfate, sodium decyl sulfate, and sodium dodecyl sulfate. The structural changes during phage disruption were monitored by spin-labeled electron spin resonance (ESR) and circular dichroism spectroscopy. For the purpose of ESR spectroscopy the major coat protein mutants V31C and G38C were site-directed spin labeled in the intact phage particle. These mutants were selected because the mutated sites are located in the hydrophobic part of the protein, and provide good reporting locations for phage integrity. All amphiphiles studied were capable of phage disruption. However, no significant phage disruption was detected below the critical micelle concentration of the amphiphile used. Based on this finding and the linear dependence of phage disruption by amphiphiles on the phage concentration, it is suggested that the solubilization of the proteins of the phage coat by amphiphiles starts with an attachment to and penetration of amphiphile molecules into the phage particle. The amphiphile concentration in the phage increases in proportion to the amphiphile concentration in the aqueous phase. Incorporation of the amphiphile in the phage particle is accompanied with a change in local mobility of the spin-labeled part of the coat protein and its secondary structure. With increasing the amphiphile concentration in the phage particle, a concentration is reached where the concentration of the amphiphile in the aqueous phase is around its critical micelle concentration. A further increase in amphiphile concentration results in massive phage disruption. Phage disruption by amphiphiles appears to be dependent on the phage coat mutations. It is concluded that phage disruption is dependent on a hydrophobic effect, since phage solubilization could significantly be increased by keeping the hydrophilic part of the amphiphile constant, while increasing its hydrophobic part.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0167-4838(01)00281-3DOI Listing

Publication Analysis

Top Keywords

phage disruption
28
phage
17
phage particle
16
amphiphile concentration
16
concentration
9
amphiphile
9
bacteriophage m13
8
sulfate sodium
8
coat protein
8
disruption phage
8

Similar Publications

Biochemistry of Bacterial Biofilm: Insights into Antibiotic Resistance Mechanisms and Therapeutic Intervention.

Life (Basel)

January 2025

Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.

Biofilms, composed of structured communities of bacteria embedded in a self-produced extracellular matrix, pose a significant challenge due to their heightened resistance to antibiotics and immune responses. This review highlights the mechanisms underpinning antibiotic resistance within bacterial biofilms, elucidating the adaptive strategies employed by microorganisms to withstand conventional antimicrobial agents. This encompasses the role of the extracellular matrix, altered gene expression, and the formation of persister cells, contributing to the recalcitrance of biofilms to eradication.

View Article and Find Full Text PDF

Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis.

View Article and Find Full Text PDF

A Predicted Helix-Turn-Helix Core Is Critical for Bacteriophage Kil Peptide to Disrupt Cell Division.

Antibiotics (Basel)

January 2025

Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA.

: FtsZ, a eukaryotic tubulin homolog and an essential component of the bacterial divisome, is the target of numerous antimicrobial compounds as well as proteins and peptides, most of which inhibit FtsZ polymerization dynamics. We previously showed that the Kil peptide from bacteriophage λ inhibits cell division by disrupting FtsZ ring assembly, and this inhibition requires the presence of the essential FtsZ membrane anchor protein ZipA. : To investigate Kil's molecular mechanism further, we employed deletions, truncations, and molecular modeling to identify the minimal residues necessary for its activity.

View Article and Find Full Text PDF

BK virus is implicated in polyomavirus-associated nephropathy (PVAN) and hemorrhagic cystitis, particularly in kidney transplant recipients, affecting the functionality of the transplanted kidney and posing a risk of graft loss. Despite these challenges, specific antiviral drugs targeting BK virus remain elusive. Agnoprotein, a small, positively charged protein encoded by the BK virus late gene, functions in the assembly, maturation, and release of the virus.

View Article and Find Full Text PDF

A Class 1 OLD family nuclease encoded by is countered by a vibriophage-encoded direct inhibitor.

bioRxiv

January 2025

Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA.

Bacteria are constantly threatened by their viral predators (phages), which has resulted in the development of defense systems for bacterial survival. One family of defense systems found widely across bacteria are OLD (for overcoming lysogeny defect) family nucleases. Despite recent discoveries regarding Class 2 and 4 OLD family nucleases and how phages overcome them, Class 1 OLD family nucleases warrant further study as there has only been one anti-phage Class 1 OLD family nuclease described to date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!