The N-methyl-D-aspartate subtype of glutamate receptor (NMDAR) serves critical functions in physiological and pathological processes in the central nervous system, including neuronal development, plasticity and neurodegeneration. Conventional heteromeric NMDARs composed of NR1 and NR2A-D subunits require dual agonists, glutamate and glycine, for activation. They are also highly permeable to Ca2+, and exhibit voltage-dependent inhibition by Mg2+. Coexpression of NR3A with NR1 and NR2 subunits modulates NMDAR activity. Here we report the cloning and characterization of the final member of the NMDAR family, NR3B, which shares high sequence homology with NR3A. From in situ and immunocytochemical analyses, NR3B is expressed predominantly in motor neurons, whereas NR3A is more widely distributed. Remarkably, when co-expressed in Xenopus oocytes, NR3A or NR3B co-assembles with NR1 to form excitatory glycine receptors that are unaffected by glutamate or NMDA, and inhibited by D-serine, a co-activator of conventional NMDARs. Moreover, NR1/NR3A or -3B receptors form relatively Ca2+-impermeable cation channels that are resistant to Mg2+, MK-801, memantine and competitive antagonists. In cerebrocortical neurons containing NR3 family members, glycine triggers a burst of firing, and membrane patches manifest glycine-responsive single channels that are suppressible by D-serine. By itself, glycine is normally thought of as an inhibitory neurotransmitter. In contrast, these NR1/NR3A or -3B 'NMDARs' constitute a type of excitatory glycine receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature715 | DOI Listing |
Front Mol Neurosci
December 2024
Axonis Therapeutics Inc., Boston, MA, United States.
KCC2 is CNS neuron-specific chloride extruder, essential for the establishment and maintenance of the transmembrane chloride gradient, thereby enabling synaptic inhibition within the CNS. Herein, we highlight KCC2 hypofunction as a fundamental and conserved pathology contributing to neuronal circuit excitation/inhibition (E/I) imbalances that underly epilepsies, chronic pain, neuro-developmental/-traumatic/-degenerative/-psychiatric disorders. Indeed, downstream of both acquired and genetic factors, multiple pathologies (e.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA.
Aging affects virtually all organs of the body, but perhaps it has the most profound effects on the brain and its neurotransmitter systems, which influence a wide range of crucial functions, such as attention, focus, mood, neuroendocrine and autonomic functions, and sleep cycles. All of these essential functions, as well as fundamental cognitive processes such as memory, recall, and processing speed, utilize neuronal circuits that depend on neurotransmitter signaling between neurons. Glutamate (Glu), the main excitatory neurotransmitter in the CNS, is involved in most neuronal excitatory functions, including release of the neurotransmitter norepinephrine (NE).
View Article and Find Full Text PDFCureus
October 2024
Anesthesiology, Unidade Local de Saúde da Região de Aveiro, Aveiro, PRT.
Tranexamic acid (TXA) is an antifibrinolytic drug widely used to reduce blood loss in major surgeries and trauma patients, thus reducing morbimortality. In recent years, clinical indications for TXA have expanded, including many off-label uses. This broad use has led to an increased incidence of reported side effects and administration errors with serious neurological and cardiovascular outcomes, such as seizures, myoclonus, and arrhythmias.
View Article and Find Full Text PDFMotor axon regeneration after traumatic nerve injuries is a slow process that adversely influences patient outcomes because muscle reinnervation delays result in irreversible muscle atrophy and suboptimal axon regeneration. This advocates for investigating methods to accelerate motor axon growth. Electrical nerve stimulation and exercise both enhance motor axon regeneration in rodents and patients, but these interventions cannot always be easily implemented.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France. Electronic address:
Amyotrophic lateral sclerosis and frontotemporal dementia are two fatal neurodegenerative disorders. They are part of a pathophysiological continuum, displaying clinical, neuropathological, and genetic overlaps. There is compelling evidence that neuronal circuit dysfunction is an early feature of both diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!