Tetrachloroethene dehalorespiration and growth of Desulfitobacterium frappieri TCE1 in strict dependence on the activity of Desulfovibrio fructosivorans.

Appl Environ Microbiol

Center for Environmental Research and Environmental Technology (UFT), Department of Marine Microbiology, University of Bremen, Leobener Strasse, 28359 Bremen, Germany.

Published: February 2002

Tetrachloroethene (PCE) dehalorespiration was investigated in a continuous coculture of the sulfate-reducing bacterium Desulfovibrio fructosivorans and the dehalorespiring Desulfitobacterium frappieri TCE1 at different sulfate concentrations and in the absence of sulfate. Fructose (2.5 mM) was the single electron donor, which could be used only by the sulfate reducer. With 2.5 mM sulfate, the dehalogenating strain was outnumbered by the sulfate-reducing bacterium, sulfate reduction was the dominating process, and only trace amounts of PCE were dehalogenated by strain TCE1. With 1 mM sulfate in the medium, complete sulfate reduction and complete PCE dehalogenation to cis-dichloroethene (cis-DCE) occurred. In the absence of sulfate, PCE was also completely dehalogenated to cis-DCE, and the population size of strain TCE1 increased significantly. The results presented here describe for the first time dehalogenation of PCE by a dehalorespiring anaerobe in strict dependence on the activity of a sulfate-reducing bacterium with a substrate that is exclusively used by the sulfate reducer. This interaction was studied under strictly controlled and quantifiable conditions in continuous culture and shown to depend on interspecies hydrogen transfer under sulfate-depleted conditions. Interspecies hydrogen transfer was demonstrated by direct H(2) measurements of the gas phase and by the production of methane after the addition of a third organism, Methanobacterium formicicum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC126694PMC
http://dx.doi.org/10.1128/AEM.68.2.642-649.2002DOI Listing

Publication Analysis

Top Keywords

sulfate-reducing bacterium
12
sulfate
9
desulfitobacterium frappieri
8
frappieri tce1
8
strict dependence
8
dependence activity
8
desulfovibrio fructosivorans
8
tce1 sulfate
8
absence sulfate
8
sulfate reducer
8

Similar Publications

Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.

Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.

View Article and Find Full Text PDF

Cobalt regulation biocathode with sulfate-reducing bacteria for enhancing the reduction of antimony and the removal of sulfate in a microbial electrolysis cell simultaneously.

Environ Res

January 2025

School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:

Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.

View Article and Find Full Text PDF

Synthesis mechanisms, property characterization, and environmental applications of biogenic FeS: A review.

Water Res

January 2025

Baohang Environment Co., LTD, Beijing 100070, China. Electronic address:

Iron sulfide (FeS) exhibits superior reactivity toward a wide range of contaminants, making it a promising candidate for environmental remediation in various media, including surface water, wastewater, soil, and groundwater. Driven by green and sustainable development principles, efficient, low-cost, and environmentally friendly biosynthesis has attracted considerable attention and has great environmental remediation potential. This review provides a comprehensive overview of the recent advances in biogenic FeS (bio-FeS), focusing on its synthesis mechanisms, performance characterization, and environmental applications.

View Article and Find Full Text PDF

Behavior and Mechanisms of Antimony Precipitation from Wastewater by Sulfate-Reducing Bacteria .

Toxics

December 2024

Key Laboratory of Biometallurgy, Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.

The development of the non-ferrous metal industry is generating increasingly large quantities of wastewater containing heavy metals (e.g., Sb).

View Article and Find Full Text PDF

Enhancing sulfide mitigation via the synergistic dosing of calcium peroxide and ferrous ions in gravity sewers: Efficiency and mechanism.

J Hazard Mater

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment, and Ecology, Ministry of Education, Xi'an 710055, China. Electronic address:

Chemical dosing constitutes an effective strategy for sulfide control in sewers; however, its efficacy requires further optimization and enhancement. In this study, a novel dosing strategy using the synergistic dosing of calcium peroxide (CaO) and ferrous ions (Fe) for sulfide control was proposed, and its efficacy in controlling sulfides was evaluated using a long-term laboratory-scale reactor. The results showed that adding CaO-Fe improves the effect of sulfide control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!