A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification and functional analysis of mutations in FAD-binding domain of mitochondrial glycerophosphate dehydrogenase in caucasian patients with type 2 diabetes mellitus. | LitMetric

Ca2+-responsive mitochondrial FAD-linked glycerophosphate dehydrogenase (mGPDH) is a key component of the pancreatic beta-cell glucose-sensing device. The purpose of this study was to examine the association of mutations in the cDNA coding for the FAD-binding domain of mGPDH and to explore the functional consequences of these mutations in vitro. To investigate this association in type 2 diabetes mellitus, we studied a cohort of 168 patients with type 2 diabetes and 179 glucose-tolerant control subjects of Spanish Caucasian origin by single-stranded conformational polymorphism analysis. In vitro site-directed mutagenesis was performed in the mGPDH cDNA sequence to reproduce those mutations that produce amino acid changes in a patient with type 2 diabetes. We detected mutations in the mGPDH FAD-binding domain in a single patient, resulting in a Gly to Arg amino acid change at positions 77, 78, and 81 and a Thr to Pro at position 90. In vitro expression of the mutated constructs in Xenopus oocytes resulted in a significantly lower enzymatic activity than in cells expressing the wild-type form of the enzyme. Our results indicate that although mutations in the mGPDH gene do not appear to have a major role in type 2 diabetes mellitus, the reduction in mGPDH enzymatic activity associated with the newly described mGPDH mutations suggests that they may contribute to the disease in some patients.

Download full-text PDF

Source
http://dx.doi.org/10.1385/ENDO:16:1:39DOI Listing

Publication Analysis

Top Keywords

type diabetes
20
fad-binding domain
12
diabetes mellitus
12
glycerophosphate dehydrogenase
8
patients type
8
amino acid
8
mutations mgpdh
8
enzymatic activity
8
mutations
7
mgpdh
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!