Objective: To determine to what extent urinary excretion of blood pressure-modulating electrolytes is genetically determined, and to identify their chromosomal localization.
Design And Methods: Twenty-six rat recombinant inbred strains (RIS) originating from reciprocal crosses of normotensive Brown Norway (BN.Lx) and spontaneously hypertensive rats (SHR) were used. A pilot experiment on a subset of strains determined that fasting decreases the impact of environmental noise and increases that of heritability. Twenty-four-hour urinary collections were obtained from fasting rats aged 6-12 weeks (3-8 rats per strain). Sodium (Na), potassium (K) and calcium (Ca) excretions were measured, and the Na/K ratio calculated. These phenotypes served as quantitative traits for the search of quantitative trait loci (QTLs) by scanning the RIS genome that was mapped with 475 polymorphic markers.
Results: Constant Na intake resulted in a low heritability for Na excretion, reflecting the environmental impact (intake = excretion), whereas fasting revealed a gradient among RIS indicative of the genetic component of the traits. In the fasting state, a locus on chromosome 14 was found to be significantly associated with K excretion (Alb, P = 0.00002, r = -0.69, logarithm of the odds score (LOD) 3.9), whereas another locus on chromosome 10 (D10Cebrp97s5, P = 0.0003, r = -0.69, LOD 3.0) and one on chromosome 6 (D6Cebrp97s14, P = 0.0007, r = -0.65, LOD 1.9) were more significantly associated with Na excretion and the Na/K ratio respectively. The observed correlations were all negative for Na, K and Na/K, indicating a higher excretion of Na and K and a greater Na/K ratio in rats bearing BN.Lx alleles at these loci, i.e. salt retention in fasting SHR. These three loci accounted for 47-55% of variance of their associated trait, suggesting that they are the main genetic determinants for these phenotypes in basal fasting conditions. Rats bearing the Y chromosome of SHR origin had significantly higher K excretion that, in turn, led to a significantly lower Na/K ratio. Finally, a locus on chromosome 7 was linked to Ca excretion, explaining 46% of the trait variance (D7Mit10, LOD score 3.0).
Conclusion: RIS enabled us to determine QTLs for environmentally modulated traits such as Na, K and Ca excretions. We demonstrated that whereas urinary electrolytes are determined mainly by intake (environment) in a steady state, their excretion in an adaptive state (fasting) is predominantly genetically determined by distinct QTL on autosomes as well as the Y chromosome. Furthermore, the loci responsible for Na and K excretions act independently of the locus governing the relative excretion of Na/K. Thus, the salt-retaining aspects of some hypertensives may be, in large part, determined by genes responsible for renal excretion, the impact of which is predominant over the environment under acute challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00004872-200202000-00010 | DOI Listing |
Sci Rep
January 2025
U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France.
Deciphering the sources of variability in drug responses requires to understand the processes modulating drug pharmacokinetics. However, pharmacological research suffers from poor reproducibility across clinical, animal, and experimental models. Predictivity can be improved by using Organs-on-Chips, which are more physiological, human-oriented, micro-engineered devices that include microfluidics.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
Objectives: Recently, sarcopenia has been linked to unfavorable outcomes in various surgical procedures, including lung cancer surgery. This study aimed to investigate the impact of respiratory sarcopenia (RS) on postoperative and long-term outcomes in elderly patients undergoing lung cancer surgery.
Methods: This retrospective study included patients aged 70 years and older who underwent lobectomy with curative intent for lung cancer between 2017 and 2019.
Sci Total Environ
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China. Electronic address:
Increasing annual soil salinization poses a major threat to global ecological security. Soil microorganisms play an important role in improving plant adaptability to stress tolerance, however, the mechanism of saline-alkali tolerance to plants associated with rhizosphere microbiome is unclear. We investigated the composition and structure of the rhizospheric bacteria and fungi communities of the saline-alkali tolerant (Oryza sativa var.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.
View Article and Find Full Text PDFBackground: The primary prevention of atrial fibrillation (AF), which increases mortality through complications including stroke and heart failure, is important. Excessive salt intake and low potassium intake are risk factors for cardiovascular disease; however, their association with AF remains inconclusive. This study investigated the association between sodium- and potassium-related urinary markers and AF prevalence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!