Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effects of the non-N-methyl-D-aspartate (NMDA) agonist quisqualate (QUIS) and selective AMPA/kainate receptor antagonist 1-(aminophenyl)-methyl-7, 8-methyilendioxy-5H-2,3-benzodiazepine (GYKI 52466) on the release of acetylcholine (ACh) from the hippocampus and striatum of freely moving rats were studied by transversal microdialysis. Acetylcholine level in the dialisate was measured by the high performance liquid chromatography (HPLC) method with an electrochemical detector. The QUIS (100 microM) perfused through the striatum induced an increase of extracellular ACh level (250%) which lasted for over 1h and gradually returned to basal values. Local perfusion of GYKI 52466 (10-100 microM) to the striatum did not change the basal release of ACh. GYKI 52466 (10 microM) administered together with QUIS (100 microM) in he striatum antagonized the stimulant effect of QUIS on the ACh release. Local administration of the QUIS (100 microM) through the microdialysis fiber implanted in the hippocampus, caused a long lasting increase of extracellular hippocampal ACh level (360%) which was reversed when the drug was withdrawn from the perfusion solution. The stimulant effect of QUIS was antagonized by concomitant perfusion of GYKI (10 microM). No effect was seen on the basal ACh release when GYKI (10-100 microM) was perfused through the hippocampus. Local perfusion with tetrodotoxin (1 microM) decrease the basal release of ACh and prevented the QUIS-induced increase of ACh both in the hippocampus and striatum. Our in vivo neurochemical results indicate that hippocampal and striatal cholinergic systems are regulated by non-NMDA (probably AMPA) glutamatergic receptors located in the hippocampus and striatum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0197-0186(01)00103-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!