N-Acetyl-D-mannosamine (ManNAc) and N-acetyl-D-glucosamine (GlcNAc) are the essential precursors of N-acetylneuraminic acid (NeuAc), the specific monomer of polysialic acid (PA), a bacterial pathogenic determinant. Escherichia coli K1 uses both amino sugars as carbon sources and uptake takes place through the mannose phosphotransferase system transporter, a phosphoenolpyruvate-dependent phosphotransferase system that shows a broad range of specificity. Glucose, mannose, fructose, and glucosamine strongly inhibited the transport of these amino-acetylated sugars and GlcNAc and ManNAc strongly affected ManNAc and GlcNAc uptake, respectively. The ManNAc and the GlcNAc phosphorylation that occurs during uptake affected NeuAc synthesis in vitro. These findings account for the low in vivo PA production observed when E. coli K1 uses ManNAc or GlcNAc as a carbon source for growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(01)03318-xDOI Listing

Publication Analysis

Top Keywords

mannac glcnac
12
escherichia coli
8
polysialic acid
8
phosphotransferase system
8
mannac
5
glcnac
5
transport n-acetyl-d-mannosamine
4
n-acetyl-d-mannosamine n-acetyl-d-glucosamine
4
n-acetyl-d-glucosamine escherichia
4
coli capsular
4

Similar Publications

GNE myopathy, also known as hereditary inclusion body myopathy (HIBM), is a rare genetic muscle disorder marked by a gradual onset of muscle weakness in young adults. GNE myopathy (GNEM) is caused by bi-allelic variants in the UDP--acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase)/-acetylmannosamine kinase (ManNAc kinase) gene (), clinically resulting in the loss of ambulation within 10-20 years from the onset of the initial symptoms. The disease's mechanism is poorly understood and non-invasive biomarkers are lacking, hindering effective therapy development.

View Article and Find Full Text PDF
Article Synopsis
  • - Understanding the S-layer anchoring in bacteria involves non-covalent interactions between S-layer domains and secondary cell wall polymers (SCWPs), with specific roles for ManNAc ligands and the MnaA enzyme in SCWP biosynthesis.
  • - Research focused on producing MnaA and its variants to analyze their kinetic properties, test allosteric activation by UDP-GlcNAc, and explore the effects of tunicamycin as a potential inhibitor using crystal structure analysis and molecular docking.
  • - The study revealed the crystal structure of MnaA and confirmed the conservation of key residues, finding that UDP-GlcNAc boosts reaction rates but isn't essential for its function, while tunicamycin doesn't
View Article and Find Full Text PDF

Cyanovirin-N (CV-N) binds high-mannose oligosaccharides on enveloped viruses with two carbohydrate-binding sites, one bearing high affinity and one low affinity to Manα(1-2)Man moieties. A tandem repeat of two CV-N molecules (CVN2) was tested for antiviral activity against human immunodeficiency virus type I (HIV-1) by using a domain-swapped dimer. CV-N was shown to bind -acetylmannosamine (ManNAc) and -acetyl-d-glucosamine (GlcNAc) when the carbohydrate-binding sites in CV-N were free to interact with these monosaccharides independently.

View Article and Find Full Text PDF

The activity of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) is essential for the biosynthesis of sialic acid, which is involved in cellular processes in health and diseases. GNE contains an N-terminal epimerase domain and a C-terminal kinase domain (N-acetylmannosamine kinase, MNK). Mutations of the GNE protein led to hypoactivity of the enzyme and cause sialurea or autosomal recessive inclusion body myopathy/Nonaka myopathy.

View Article and Find Full Text PDF

is a human pathogen and a leading cause of food poisoning in North America and Europe. The exterior surface of the bacterial cell wall is attached to a polymeric coat of sugar molecules known as the capsular polysaccharide (CPS) that helps protect the organism from the host immune response. The CPS is composed of a repeating sequence of common and unusual sugar residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!