Determination of tylosin residues in different animal tissues by high performance liquid chromatography.

J Chromatogr B Analyt Technol Biomed Life Sci

Department de Farmacologia i Terapèutica, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain.

Published: January 2002

A HPLC method to determine and quantify tylosin residues from calves, pigs and poultry is reported. This procedure permitted tylosin to be separated from muscle, liver, kidney and fat after a simple extraction with chloroform or ethyl acetate under basic conditions. The analytical methodology showed a high specificity and sensitivity and an adequate precision and accuracy with a limit of quantification of 50 microg/kg. Eight calves were administered 20 mg/kg/day of tylosin for 5 days and slaughtered at 7 and 14 days post-administration. Results showed that at the 14th day tylosin levels were lower than the MRL in all target tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9673(01)01325-5DOI Listing

Publication Analysis

Top Keywords

tylosin residues
8
determination tylosin
4
residues animal
4
animal tissues
4
tissues high
4
high performance
4
performance liquid
4
liquid chromatography
4
chromatography hplc
4
hplc method
4

Similar Publications

Antimicrobial Susceptibility of to Macrolides and Characterization of (T)-Carrying Mobile Elements on Chromosome.

Animals (Basel)

January 2025

National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China.

is the etiological agent of Glässer's disease, which causes high morbidity and mortality in pigs worldwide. Macrolide resistance poses an urgent threat to their treatment, as macrolides are widely used for preventing and treating infections. Here, we determined the susceptibilities to five macrolides and characterized the genetic markers of macrolide resistance.

View Article and Find Full Text PDF

Pen direct writing of multiplex-LFIA for detection of thiamphenicol and tylosin in milk.

Mikrochim Acta

January 2025

Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork, T12R5CP, Ireland.

Therapeutic and misuse of veterinary drugs, such as antibiotics, can increase the potential risk of residue contamination in animal-derived food products. For milk, these residual antibiotics can have an impact on efficiency in dairy processing factories, as well as economic loss, and can also cause side effects on consumer health. Lateral flow immunoassays (LFIAs) are gaining popularity for their ease of use, low cost and their fulfilment to the REASSURED (real-time connection/monitoring, easy sampling, affordable, specific, user-friendly, rapid/robust, equipment free, deliverable to end user) criteria.

View Article and Find Full Text PDF

The objective of this study was to examine the residue elimination patterns of seven antibiotics in the eggs of Taihang chickens under free-range conditions and develop suitable withdrawal times (WDTs). A total of 240 healthy Taihang chickens, aged 180 days, were randomly divided into eight groups of 30 birds each. The first seven groups were administered oxytetracycline, chlortetracycline, erythromycin, tylosin, tylvalosin, lincomycin, and tiamulin, respectively, in accordance with the maximum dosages and longest durations of treatment recommended by the Veterinary Pharmacopoeia of the People's Republic of China.

View Article and Find Full Text PDF

In this study, residue depletion and withdrawal time estimation of tilmicosin were examined in Taihe black-bone silky fowls (TBSFs) after oral administration for three consecutive days at a dose of 75 mg/L in water. The tilmicosin concentrations in liver, kidney, muscle, and skin/fat of TBSFs collected from different time points (0.16, 1, 3, 5, 7, 9, 12, 20, 30, 40 days after last administration) were determined by UPLC-MS/MS.

View Article and Find Full Text PDF

DNA-directed immobilization fluorescent immunoarray for multiplexed antibiotic residue determination in milk.

Anal Bioanal Chem

December 2024

Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, Barcelona, 08034, Spain.

The presence of antibiotic residues in cow's milk entails high risk for consumers, the dairy industry, and the environment. Therefore, the development of highly specific and sensitive screening tools for the rapid and cost-effective identification of traces of these compounds is urgently needed. A multiplexed screening platform utilizing DNA-directed immobilization (DDI) was developed aiming to detect three classes of antibiotic residues (fluoroquinolones, sulfonamides, and tylosin) prevalently found in milk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!