Heterogeneity of release-inhibiting muscarinic autoreceptors in heart atria and urinary bladder: a study with M(2)- and M(4)-receptor-deficient mice.

Naunyn Schmiedebergs Arch Pharmacol

Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Hermann-Herder-Strasse 5, D-79104 Freiburg i.Br., Germany.

Published: February 2002

Release-inhibiting muscarinic autoreceptors were studied in heart atria and the urinary bladder of NMRI mice, M(2)-receptor-deficient mice, M(4)-receptor-deficient mice, and wildtype mice sharing the genetic background of the knockout animals. Segments of the tissues were preincubated with (3)H-choline and then superfused and stimulated electrically. In atrial segments taken from adult mice and stimulated with 120 pulses at 1 Hz, the muscarinic receptor agonist oxotremorine-M reduced the evoked overflow of tritium. Its concentration-response curves in atria from NMRI, M(2)-wildtype, M(4)-wildtype and M(2)-knockout mice were similar, with maximal inhibition by about 75%. In atria from M(4)-knockout mice, the maximal inhibitory effect of oxotremorine-M was reduced to 57%. The concentration-response curves of oxotremorine-M were shifted to the right by ipratropium, methoctramine and pirenzepine. Methoctramine and pirenzepine were approximately equipotent antagonists in all strains except in M(4)-knockout atria in which methoctramine was more potent than pirenzepine. When atria from adult NMRI mice were stimulated by 360 pulses at 3 Hz, ipratropium increased the evoked overflow of tritium both in the absence and in the presence of physostigmine (0.1 microM). In atria taken from 1-day-old NMRI mice, oxotremorine-M failed to reduce the evoked overflow of tritium. In bladder segments taken from adult mice, superfused with medium containing oxotremorine-M (1 microM), and stimulated by 360 pulses at 3 Hz, ipratropium increased the evoked overflow of tritium. Its concentration-response curves in preparations from NMRI, M(2)-wildtype, M(4)-wildtype and M(2)-knockout mice were similar. There was one exception: ipratropium failed to cause an increase in bladder pieces from M(4)-knockout mice. Methoctramine and pirenzepine also increased the evoked overflow of tritium in all strains except the M(4)-knockout. The two antagonists were approximately equipotent in NMRI, M(4)-wildtype and M(2)-knockout preparations but methoctramine was less potent than pirenzepine in M(2)-wildtype preparations. When bladder pieces from adult NMRI mice were superfused with oxotremorine-M-free medium and stimulated by 360 pulses at 3 Hz, ipratropium increased the evoked overflow of tritium in the presence of physostigmine (0.1 microM) but not in its absence. In bladder segments taken from 1-day-old NMRI mice and superfused with medium containing oxotremorine-M (1 microM), ipratropium increased the evoked overflow of tritium in the same way as in adult tissue. It is concluded that NMRI mice and the two wildtype strains are similar in their muscarinic autoreceptors. In atria, the autoreceptors are heterogeneous. Some are M(4). The non-M(4)-autoreceptors probably are M(2). In the bladder, the autoreceptors are exclusively M(4). In both tissues, the autoreceptors are activated by previously released acetylcholine under appropriate conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-001-0517-7DOI Listing

Publication Analysis

Top Keywords

evoked overflow
28
overflow tritium
28
nmri mice
24
increased evoked
20
mice
16
ipratropium increased
16
muscarinic autoreceptors
12
concentration-response curves
12
m4-wildtype m2-knockout
12
methoctramine pirenzepine
12

Similar Publications

More than words: can free reports adequately measure the richness of perception?

Neurosci Conscious

October 2024

Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel.

The question of the richness (or sparseness) of conscious experience has evoked ongoing debate and discussion. Claims for both richness and sparseness are supported by empirical data, yet they are often indirect, and alternative explanations have been put forward. Recently, it has been suggested that current experimental methods limit participants' responses, thereby preventing researchers from assessing the actual richness of perception.

View Article and Find Full Text PDF

Background: Aspects of glutamate neurotransmission implicated in normal and pathological conditions are predominantly evaluated using in vivo recording paradigms in rats anesthetized with isoflurane or urethane. Urethane and isoflurane anesthesia influence glutamate neurotransmission through different mechanisms; however, real-time outcome measures of potassium chloride (KCl)-evoked glutamate overflow and glutamate clearance kinetics have not been compared within and between regions of the brain. In order to maintain rigor and reproducibility within the literature between the two most common methods of anesthetized in vivo recording of glutamate, we compared glutamate signaling as a function of anesthesia and brain region in the rat strain most used in neuroscience.

View Article and Find Full Text PDF

The present experiments were designed to examine the ability of calcitriol to protect against methamphetamine (METH)-induced reductions in striatal serotonin (5-HT) release and content. Male Fischer-344 rats were administered vehicle or calcitriol (0.3, 1.

View Article and Find Full Text PDF

Aspects of glutamate neurotransmission implicated in normal and pathological conditions are often evaluated using recording paradigms in rats anesthetized with isoflurane or urethane. Urethane and isoflurane anesthesia influence glutamate neurotransmission through different mechanisms; however real-time outcome measures of potassium chloride (KCl)-evoked glutamate overflow and glutamate clearance kinetics have not been compared within and between regions of the brain. In the following experiments, amperometric recordings of KCl-evoked glutamate overflow and glutamate clearance kinetics (uptake rate and T) in the cortex, hippocampus and thalamus were performed using glutamate-selective microelectrode arrays (MEAs) in young adult male, Sprague-Dawley rats anesthetized with isoflurane or urethane.

View Article and Find Full Text PDF

Nanomolar clodronate induces adenosine accumulation in the perfused rat mesenteric bed and mesentery-derived endothelial cells.

Front Pharmacol

January 2023

Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

The vesicular nucleotide transporter (VNUT) is critical for sympathetic co-transmission and purinergic transmission maintenance. To examine this proposal, we assessed whether the bisphosphonate clodronate, claimed as a potent VNUT blocker, modified spontaneous and/or the electrically evoked overflow of ATP/metabolites and NA from mesentery sympathetic perivascular nerve terminals. Additionally, in primary endothelial cell cultures derived from this tissue, we also evaluated whether clodronate interfered with ATP/metabolite cell outflow and metabolism of N-etheno adenosine 5'-triphosphate (eATP), N-etheno adenosine (eADO), and adenosine deaminase enzyme activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!