Here, we describe the isolation and characterization of the rhesus macaque homolog for human DC-SIGN, a dendritic cell-specific C-type lectin. mac-DC-SIGN is 92% identical to hu-DC-SIGN. mac-DC-SIGN preserves the virus transmission function of hu-DC-SIGN, capturing and efficiently transducing simian and human immunodeficiency virus to target CD4(+) T cells. Surprisingly, however, mac-DC-SIGN plays no discernable role in the ability of rhesus macaque dendritic cells to capture and transmit primate lentiviruses. Expression and neutralization analyses suggest that this process is DC-SIGN independent in macaque, although the participation of other lectin molecules cannot be ruled out. The ability of primate lentiviruses to effectively use human and rhesus dendritic cells in virus transmission without the cells becoming directly infected suggests that these viruses have taken advantage of a conserved dendritic cell mechanism in which DC-SIGN family molecules are significant contributors but not the only participants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC122231 | PMC |
http://dx.doi.org/10.1073/pnas.032654399 | DOI Listing |
PLoS Pathog
December 2024
University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany.
Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity.
View Article and Find Full Text PDFAm J Primatol
January 2025
School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
Intergroup competition for limited resources is a significant selection pressure that drives the evolution of animal society. The rhesus macaque (Macaca Mulatta) is the most widely distributed nonhuman primate in the world and can adapt well to environments disturbed by humans. In some areas, human provisioning provides ample food resources for rhesus macaques, leading to an increase in their population size, inevitably affecting competition patterns within and between groups.
View Article and Find Full Text PDFAm J Primatol
January 2025
Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China.
Recent evidence challenging the notion of a sterile intrauterine environment has sparked research into the origins and effects of fetal microbiota on immunity development during gestation. Rhesus macaques (RMs) serve as valuable nonhuman primate models due to their similarities to humans in development, placental structure, and immune response. In this study, metagenomic analysis was applied to the placenta, umbilical cord, spleen, gastrointestinal tissues of an unborn RM fetus, and the maternal intestine, revealing the diversity and functionality of microbes in these tissues.
View Article and Find Full Text PDFTau pathology in sporadic Alzheimer's disease (AD) follows a distinct pattern, beginning in the entorhinal cortex (ERC) and spreading to interconnected brain regions. Early-stage tau pathology, characterized by soluble phosphorylated tau, is difficult to study in human brains post-mortem due to rapid dephosphorylation. Rhesus macaques, which naturally develop age-related tau pathology resembling human AD, provide an ideal model for investigating early tau etiology.
View Article and Find Full Text PDFCereb Cortex
December 2024
School of Medicine, Washington University in St. Louis, Fort Neuroscience Research Building, 4370 Duncan Ave., St. Louis, MO 63110, United States.
Arousal states are thought to influence many aspects of cognition and behavior by broadly modulating neural activity. Many studies have observed arousal-related modulations of alpha (~8 to 15 Hz) and gamma (~30 to 50 Hz) power and coherence in local field potentials across relatively small groups of brain regions. However, the global pattern of arousal-related oscillatory modulation in local field potentials is yet to be fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!