Viral persistence: HIV's strategies of immune system evasion.

Annu Rev Med

New England Regional Primate Research Center, One Pine Hill Drive, Southborough, Massachusetts 01772-9102, USA.

Published: April 2002

In contrast to most animal viruses, infection with the human and simian immunodeficiency viruses results in prolonged, continuous viral replication in the infected host. Remarkably, viral persistence is not thwarted by the presence of apparently vigorous, virus-specific immune responses. Several factors are thought to contribute to persistent viral replication, most notably the destruction of virus-specific T helper cells, the emergence of antigenic escape variants, and the expression of an envelope complex that structurally minimizes antibody access to conserved epitopes. Not as well understood, though potentially important, is the ability of at least one viral encoded protein (Nef) to prevent presentation of viral antigens in the context of major histocompatibility complex. The future success of antiviral therapies and vaccination strategies may depend largely on understanding how and to what degree each of these factors (and presumably others) contributes to immune evasion.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.med.53.082901.104053DOI Listing

Publication Analysis

Top Keywords

viral persistence
8
viral replication
8
viral
6
persistence hiv's
4
hiv's strategies
4
strategies immune
4
immune system
4
system evasion
4
evasion contrast
4
contrast animal
4

Similar Publications

The most common STD that triggers cervical cancer is the human papillomavirus. More than 20 types of human papillomavirus (HPV) can induce uterine cervical cancer. Almost all women acquire genital HPV infection soon after their first intercourse, with most of them clearing the virus within 3 years.

View Article and Find Full Text PDF

Current update on the neurological manifestations of long COVID: more questions than answers.

EXCLI J

November 2024

Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece.

Since the outbreak of the COVID-19 pandemic, there has been a global surge in patients presenting with prolonged or late-onset debilitating sequelae of SARS-CoV-2 infection, colloquially termed long COVID. This narrative review provides an updated synthesis of the latest evidence on the neurological manifestations of long COVID, discussing its clinical phenotypes, underlying pathophysiology, while also presenting the current state of diagnostic and therapeutic approaches. Approximately one-third of COVID-19 survivors experience prolonged neurological sequelae that persist for at least 12-months post-infection, adversely affecting patients' quality of life.

View Article and Find Full Text PDF

Background: Long COVID or Post-acute sequelae of COVID-19 is an emerging syndrome, recognized in COVID-19 patients who suffer from mild to severe illness and do not recover completely. Most studies define Long COVID, through symptoms like fatigue, brain fog, joint pain, and headache prevailing four or more weeks post-initial infection. Global variations in Long COVID presentation and symptoms make it challenging to standardize features of Long COVID.

View Article and Find Full Text PDF

During the omicron wave of the COVID-19 pandemic and with SARS-CoV-2 vaccines becoming available, seroprevalence rates rose in children and adolescents. This study investigated the impact of both SARS-CoV-2 infections and vaccinations on the incidence of acute and prolonged symptoms in real-world conditions during the transition from the pandemic to the endemic phase. Participants from a pediatric population based seroprevalence study (CorKID study) were followed up at least two and for almost four years by survey of health status features and symptoms suggestive of post-COVID syndrome (PCS).

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to persist, demonstrating the risks posed by emerging infectious diseases to national security, public health, and the economy. Development of new vaccines and antibodies for emerging viral threats requires substantial resources and time, and traditional development platforms for vaccines and antibodies are often too slow to combat continuously evolving immunological escape variants, reducing their efficacy over time. Previously, we designed a next-generation synthetic humanized nanobody (Nb) phage display library and demonstrated that this library could be used to rapidly identify highly specific and potent neutralizing heavy chain-only antibodies (HCAbs) with prophylactic and therapeutic efficacy in vivo against the original SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!