The microphthalmia transcription factor (MITF) regulates gene expression during differentiation of several distinct cell types, including osteoclasts. A structure/function analysis was performed to determine whether transcription activation domains were important for MITF action in osteoclasts. In addition to a previously characterized acidic activation necessary for melanocyte differentiation, the analysis defined a second potential activation domain located between amino acids 140 and 185. This second domain is required for MITF transactivation of two probable targets, the E-cadherin promoter and the tartrate-resistant acid phosphatase promoter, in transient transfection assays. An intact MITF gene rescued differentiation when introduced into osteoclasts derived from mi/mi mice using a retrovirus vector. In parallel experiments, an MITF gene lacking the acidic-activation domain rescued differentiation twofold less efficiently than wild type, and a gene lacking the region between amino acid residues 140 and 185 rescued differentiation tenfold less efficiently than wild type. The results indicate that the N-terminal region of MITF is necessary for activation of gene expression in osteoclasts and provides one mechanism by which this factor regulates distinct target genes in different cell types.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rescued differentiation
12
microphthalmia transcription
8
transcription factor
8
factor mitf
8
gene expression
8
cell types
8
140 185
8
mitf gene
8
gene lacking
8
efficiently wild
8

Similar Publications

Objective: The expanding field of hematopoietic cell transplantation (HCT) for non-malignant diseases, including those amenable to gene therapy or gene editing, faces challenges due to limited donor availability and the toxicity associated with cell collection methods. Umbilical cord blood (CB) represents a readily accessible source of hematopoietic stem and progenitor cells (HSPCs); however, the cell dose obtainable from a single cord blood unit is frequently insufficient. This limitation can be addressed by enhancing the potency of HSPCs, specifically their capacity to reconstitute hematopoiesis.

View Article and Find Full Text PDF

Background: Iron is an essential micronutrient for cell survival and growth; however, excess of this metal drives ferroptosis. Although maternal iron imbalance and placental hypoxia are independent contributors to the pathogenesis of preeclampsia, a hypertensive disorder of pregnancy, the mechanisms by which their interaction impinge on maternal and placental health remain elusive.

Methods: We used placentae from normotensive and preeclampsia pregnancy cohorts, human H9 embryonic stem cells differentiated into cytotrophoblast-like cells, and placenta-specific preeclamptic mice.

View Article and Find Full Text PDF

APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology.

Mol Neurodegener

January 2025

Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.

Background: Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects.

View Article and Find Full Text PDF

Purpose: Postmenopausal osteoporosis (PMO) is mainly concerned with the imbalance of bone resorption and bone formation. Icariin (ICA) plays a vital role in bone protection. This study investigated the mechanism of ICA in PMO rats.

View Article and Find Full Text PDF

M2 Microglia-Derived Exosomal miR-144-5p Attenuates White Matter Injury in Preterm Infants by Regulating the PTEN/AKT Pathway Through KLF12.

Mol Biotechnol

January 2025

Department of Pediatrics, Zhongda Hospital, The School of Medicine, Southeast University, No. 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China.

Perinatal white matter injury (WMI), which is prevalent in premature infants, involves M2 microglia affecting oligodendrocyte precursor cells (OPCs) through exosomes, promoting OPC growth and reducing WMI. The molecular mechanism of WMI remains unclear, and this study explored the role of M2 microglia-derived exosomes in WMI. A tMCAO rat model was constructed to simulate WMI characteristics in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!