It is still largely unclear how cell adhesion molecule (CAM)-mediated signaling evokes responses from the growth cone cytoskeleton. Here we used TX-114 extraction of growth cones followed by equilibrium gradient centrifugation to isolate subfractions of detergent-resistant microdomains (DRMs) that could be structurally and functionally distinguished on the basis of localization and activation of components of CAM-mediated signaling pathways. DRMs enriched in cholesterol, caveolin, NCAM140, GPI-linked NCAM120, fyn, and GAP-43, all conventional markers of microdomains or rafts, were located in areas 2 and 3 of the gradient. Coimmunoprecipitation of specific components of CAM signaling pathways by GAP-43 then identified distinct subpopulations of DRMs. GAP-43 from area 2 DRMs coprecipitated GPI-linked NCAM120 and was inactive, i.e., PKC phosphorylation had not been stimulated. In contrast the GAP-43 from area 3 DRMs coprecipitated both transmembrane NCAM140 and caveolin and was active, i.e., highly phosphorylated by PKC. A different subset of DRMs from both area 2 and area 3 contained fyn that could not be coprecipitated with GAP-43 antibodies. In this case area 2 DRMs contained activated fyn that was phosphorylated on Y415. In contrast area 3 DRMs contained inactive fyn. Hence fyn and GAP-43, both targets of NCAM signaling, are located in distinct populations of DRMs, and their activated forms are reciprocally distributed on the gradient. A detergent-resistant membrane fraction recovered from area 4 was enriched in NCAM140, phosphorylated GAP-43, and actin, but not cholesterol, caveolin, or fyn. Immunoelectron microscopy revealed that phosphorylated GAP-43 was localized where the membranes and F-actin interacted. Our results provide evidence for NCAM-mediated signaling in DRMs and suggest that the DRMs responsible for fyn and PKC/GAP-43-mediated NCAM signaling are structurally distinct and differentially distributed in growth cones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/mcne.2001.1060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!