Objective: To identify genes that may participate in the pathophysiology of Sjögren's syndrome (SS), the technique of differential display was applied to labial minor salivary gland (MSG) biopsy samples.
Methods: Total RNA was isolated from MSG biopsy samples from a woman with primary SS and a control subject, and the differential display protocol with 8 different random oligonucleotide primers was performed. One particular differentially expressed fragment showed 98% homology with the cysteine-rich secretory protein 3 (CRISP-3) gene. The result was verified by reverse transcription-polymerase chain reaction (RT-PCR) with messenger RNA (mRNA) samples from MSG biopsy tissues obtained from 4 women with primary SS. A CRISP-3 RNA probe was synthesized for in situ hybridization of 7 MSG biopsy samples from patients with primary SS. In an attempt to interpret the expression of CRISP-3, normal peripheral blood lymphocytes (PBLs) were activated in vitro at different time points and assayed for CRISP-3 expression. Finally, B cells were transfected with the coding region of CRISP-3 and monitored for the up-regulation of different B cell activation markers.
Results: The CRISP-3 gene was detected by RT-PCR in all SS patients tested. Mainly the mononuclear cells infiltrating the MSGs of patients expressed CRISP-3 mRNA. In addition, CRISP-3 was detected by RT-PCR between 30 minutes and 6 hours in phorbol myristate acetate-activated normal PBLs, while staurosporine inhibited this expression. CRISP-3-transfected B cells exhibited an up-regulation in CD25 surface expression.
Conclusion: The CRISP-3 gene is identified as a novel early response gene that may participate in the pathophysiology of the autoimmune lesions of SS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1529-0131(200201)46:1<215::AID-ART10024>3.0.CO;2-M | DOI Listing |
Cells
December 2024
Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain.
Cisplatin, a chemotherapeutic drug, is known for causing gastrointestinal disorders and neuropathic pain, but its impact on visceral sensitivity is unclear. Monosodium glutamate (MSG) has been shown to improve gastrointestinal dysmotility and neuropathic pain induced by cisplatin in rats. This study aimed to determine if repeated cisplatin treatment alters visceral sensitivity and whether dietary MSG can prevent these changes.
View Article and Find Full Text PDFFront Neurosci
December 2024
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
Hibernation, an adaptive mechanism to extreme environmental conditions, is prevalent among mammals. Its main characteristics include reduced body temperature and metabolic rate. However, the mechanisms by which hibernating animals re-enter deep sleep during the euthermic phase to sustain hibernation remain poorly understood.
View Article and Find Full Text PDFArthritis Res Ther
December 2024
Department of Rheumatology and Clinical Immunology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, 55 Zhenhai Road, Xiamen, XM, 361000, China.
Cells
November 2024
Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA..
Enhancement of neuronal plasticity by small-molecule therapeutics protects cognitive skills and also ameliorates progressive neurodegenerative pathologies like Alzheimer's disease (AD) and dementia. One such compound, a novel histone deacetylase 2 (HDAC2) inhibitor named JRM-28, was shown here to enhance dendritic strength, augment spine density, and upregulate post-synaptic neurotransmission in hippocampal neurons. The molecular basis for this effect correlates with JRM-28-induced upregulation of the transcription of cAMP response element-binding protein(CREB), induction of its transcriptional activity, and subsequent stimulation of expressions of CREB-dependent plasticity-associated genes, such as those encoding N-methyl-D-aspartate (NMDA) receptor subunit NR2A and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1.
View Article and Find Full Text PDFRadiographics
January 2025
From the Department of Radiology, Division of Breast Imaging, UC San Diego Health, Koman Family Outpatient Pavilion, 9400 Campus Point Dr, #7316, La Jolla, CA 92037 (S.F., J.S., R.R.P., H.O.F.); and Department of Breast Imaging, Division of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (M.S.G., B.A.).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!