Long-term trends of 137Cs and 40K concentrations in meadow grass and soil-plant transfer data at eight different sites in Upper Austria are presented. Geometric means of 137Cs TF-data and Tagg values vary between 0.03-1.06 and 0.0005-0.0184 depending on site, respectively. 40K results are less variable with TF values covering a range of 0.31-2.01. Only at one site was a significant decrease of 137Cs concentration (decay-corrected) in meadow vegetation observed during the observation period 1992-1999. Seasonal trends of 40K and 137Cs were investigated at one site in 1996. Both elements show decreasing concentrations in plants from beginning of May-July, followed by a peak in September. Although this pattern was not very pronounced, there are some hints that it may explain deviations of long-term trends in 137CS levels in grass caused by unusual weather conditions as indicated by phenological climate data (beginning of sweet cherry and black elder blossoming). Finally, TF values were correlated with soil characteristics, revealing a negative correlation of radiocaesium soil-plant transfer with soil pH, exchangeable and extractable fractions of Mg, Ca and Na as well as a positive correlation with exchangeable Al.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0265-931x(01)00063-7DOI Listing

Publication Analysis

Top Keywords

soil characteristics
8
long-term trends
8
trends 137cs
8
soil-plant transfer
8
137cs
5
radiocaesium contamination
4
contamination meadow
4
meadow vegetation--time-dependent
4
vegetation--time-dependent variability
4
variability influence
4

Similar Publications

Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives.

Water Res

January 2025

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:

Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.

View Article and Find Full Text PDF

In this research, the effect of seed halopriming with plasma activated water (PAW) on wheat germination parameters have been studied. Response surface methodology was used to investigate the effect of three factors including: 1) type of water (distilled water, 0.2 and 0.

View Article and Find Full Text PDF

In order to understand the spatial distribution, influencing factors, pollution level and sources of heavy metals in black soil profiles in Northeast China, black soil profile samples were collected from five sampling points in Haicheng City, Liaoning Province, with the deepest profile depth of 50m. The contents of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in soil at different depths were analyzed, and the distribution characteristics and influencing factors of heavy metals in black soil profiles were analyzed. The pollution level of heavy metals in soil was evaluated based on the geo-accumulation index method and enrichment factor method, and the sources of heavy metals in soil were analyzed based on principal component analysis.

View Article and Find Full Text PDF

This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.

View Article and Find Full Text PDF

In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!