We previously reported that detection of two specific points (the t-point and the s-point) in the relationship between pump speed and Motor Current Amplitude index (ICA) indicates the safe driving range for a continuous-flow ventricular assist device (CFVAD). During the first stage of the present experiment, the characteristic curves relating pump speed and ICA were determined by varying preload (left atrial pressure: -6 to 30 mm Hg), afterload (total circuit resistance: 890 to 3,180 dyne x sec x cm(-5)), and contractility of the left ventricle (total circuit flow: 0.5 to 2.1 L/min). These data showed that an ICA value of 0.18 was always located between the t- and s-points. During the second stage of the experiment, we developed an automatic driving program to control pump speed by maintaining ICA at 0.18. This program was able to drive the CFVAD, without exhibiting regurgitant flow or sucking, under various driving conditions in the mock circulation. Pump speed stabilized within 1 minute after varying the drive conditions. This sensorless method of driving the CFVAD by using a target ICA proved feasible and effective for safe automatic control, within our mock circulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00002480-200201000-00016 | DOI Listing |
Small
January 2025
Faculty of Physics and Astronomy, Adam Mickiewicz University, Poznan, 61-614, Poland.
The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.
View Article and Find Full Text PDFArtif Organs
January 2025
BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.
Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.
View Article and Find Full Text PDFPLoS One
January 2025
Electrical Engineering Department, Faculty of Engineering, Al-Baha University, Al-Baha, Saudi Arabia.
This paper investigates enhancing the efficiency of solar water pumping systems (SWPS) by implementing a Maximum Power Point Tracking technique based on the Bat Metaheuristic Optimizer (MPPT-bat) for the photovoltaic generator (PVG) side, coupled with Direct Torque Control (DTC) for the induction motor powering the pump. Unlike traditional techniques, which make no compromise between tracking speed, oscillation and robustness. The integration of the MPPT-bat represents a significant advance, making it possible to improve PVG performance whatever the weather conditions.
View Article and Find Full Text PDFJ Vasc Surg Cases Innov Tech
February 2025
Department of Health and Kinesiology, Purdue University, West Lafayette, IN.
Sci Rep
December 2024
Chitkara Centre for Research and Development, Chitkara University, Baddi, 174103, Himachal Pradesh, India.
This paper addresses the smart management and control of an independent hybrid system based on renewable energies. The suggested system comprises a photovoltaic system (PVS), a wind energy conversion system (WECS), a battery storage system (BSS), and electronic power devices that are controlled to enhance the efficiency of the generated energy. Regarding the load side, the system comprises AC loads, DC loads, and a water pump.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!