Mechanisms of wave interaction as a model of dosed substance secretion.

Dokl Biochem Biophys

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow Oblast, 142292 Russia.

Published: August 2002

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1013307411990DOI Listing

Publication Analysis

Top Keywords

mechanisms wave
4
wave interaction
4
interaction model
4
model dosed
4
dosed substance
4
substance secretion
4
mechanisms
1
interaction
1
model
1
dosed
1

Similar Publications

To enhance the safety of coal mining operations and improve the efficiency of gas extraction, hydraulic flushing technology has been widely used in low permeability coal seams. This study aims to investigate the mechanism of hydraulic flushing by conducting experiments focusing on four aspects: sample strength, punching pressure, punching position and vibration direction. The results show that an increase in hydraulic flushing pressure leads to a deeper impact groove, whereas higher sample strength results in a shallower groove.

View Article and Find Full Text PDF

Singular topological edge states in locally resonant metamaterials.

Sci Bull (Beijing)

January 2025

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:

Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).

View Article and Find Full Text PDF

Clinical and intracranial electrophysiological signatures of post-operative and post-ictal delirium.

Clin Neurophysiol

January 2025

Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA.

Objectives: (1) Gain insight into the mechanisms of postoperative delirium (POD). (2) Determine mechanistic overlap with post-ictal delirium (PID). Epilepsy patients undergoing intracranial electrophysiological monitoring can experience both POD and PID, and thus are suitable subjects for these investigations.

View Article and Find Full Text PDF

Gesture recognition technology based on millimeter-wave radar can recognize and classify user gestures in non-contact scenarios. To address the complexity of data processing with multi-feature inputs in neural networks and the poor recognition performance with single-feature inputs, this paper proposes a gesture recognition algorithm based on esNet ong Short-Term Memory with an ttention Mechanism (RLA). In the aspect of signal processing in RLA, a range-Doppler map is obtained through the extraction of the range and velocity features in the original mmWave radar signal.

View Article and Find Full Text PDF

MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read out the generated strain, thereby obtaining the targeted acoustic signal's information, such as its intensity, direction, and distribution. Due to their advantages in miniaturization, low power consumption, high precision, high consistency, high repeatability, high reliability, and ease of integration, MEMS acoustic sensors are widely applied in many areas, such as consumer electronics, industrial perception, military equipment, and health monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!