The availability of the complete nucleotide sequences of numerous prokaryotic and eukaryotic organisms should stimulate the development and application of computer-based approaches for studying genome organization and function. Earlier work has shown that distinct regulatory DNA elements can be identified by computational analysis as sites of stress-induced DNA duplex destabilization (SIDD). Here we report the results of computational and experimental analyses of previously identified regulatory elements in the murine alpha1(I) collagen (Col1a1) gene domain. We found that several distal 5' DNase I-hypersensitive sites (HSs) which function in the chromatin loop organization of the Col1a1 gene are characterized by strongly destabilized SIDD profiles. Elements in the proximal 5' promoter and first intron which differentially regulate Col1a1 promoter activity in different collagen-producing cell types also contain SIDD sites. All 5' elements associated with destabilized sites are shown to have nuclear matrix binding activity in an in vitro binding assay. Other putative regulatory elements in the transcribed and 3'-flanking regions of the Col1a1 gene, including both of its polyadenylation sites, are also associated with SIDD peaks. The human COL1A1 gene has periodic SIDD peaks within the transcribed region, suggesting that abundantly expressed genes may require SIDDs acting as topological sinks during transcription. The 5' ends of the murine Col1a1 and the homologous human gene revealed similar SIDD profiles, but limited DNA sequence similarity, indicating that some DNA functions are evolutionarily conserved by preserving higher order DNA structural properties rather than nucleotide sequence. Our results show that destabilized SIDD profiles are a common feature of eukaryotic regulatory DNA elements with such diverse functions as chromatin organization, cell-specific transcriptional enhancement, and initiation and termination of transcription. They demonstrate the usefulness of computational analyses that predict SIDD properties in reliably identifying DNA elements involved in the structural organization of the eukaryotic genome and the regulation of its expression.
Download full-text PDF |
Source |
---|
Heliyon
July 2024
Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Background: Breast cancer is a highly malignant disease worldwide, but there are currently no sufficient molecular biomarkers to predict patient prognosis and guide radiotherapy. The tumor microenvironment (TME) is an important factor affecting tumor biological function, and changes in its composition are equally relevant to tumor progression and prognosis during radiotherapy.
Methods: Here, we performed bioinformatic analyses using data obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases to screen for molecular biomarkers related to the TME that may influence radiotherapy sensitivity.
Curr Pharm Biotechnol
January 2025
Department of Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China.
Objectives: This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.
Methodology: GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.
Results: Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis.
Appl Biochem Biotechnol
January 2025
Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.
Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.
View Article and Find Full Text PDFEur Arch Paediatr Dent
January 2025
Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
Purpose: This systematic review aims to consolidate existing genetic and clinical data on non-syndromic dentinogenesis imperfecta (DI) to enhance understanding of its etiology.
Methods: Electronic databases were searched for genetic familial linkage studies published in English without time restrictions. Genetic familial linkage studies that reported cases of Shield's classifications: DI-II, DI-III or DD-II were included.
J Ethnopharmacol
January 2025
Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China; Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China. Electronic address:
Ethnopharmacological Relevance: Type 2 diabetic osteoporosis (T2DOP) is a metabolic bone disease characterized by impaired bone structure and decreased bone strength in diabetic patients. Jiangu Decoction (JGD), a traditional Chinese poly-herbal formulation, has shown efficacy in mitigating osteoporosis (OP) and fractures caused by osteoporosis in diabetic patients in clinical trials. In addition, JGD has been proven to promote the proliferation of osteoblasts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!