In the recently published X-ray crystallographic structure for the 50S subunit of Haloarcula marismortui ribosomes, residue U2546 of the 23S rRNA forms a non-Watson-Crick base pair with U2610. The corresponding residues in the secondary structure of the Escherichia coli 23S molecule are U2511 and C2575, and it follows that the latter base (C2575) should be protonated in order to form a base pair that is isostructural with its counterpart in H.marismortui. This prediction was demonstrated experimentally by reduction with sodium borohydride followed by primer extension analysis; borohydride is able to reduce positively charged bases, yielding products which block reverse transcription. In the course of the analysis a further charged base pair (AH(+)1528-G1543) was identified in the E.coli 23S molecule. Both charged pairs (U2511-CH(+)2575 and AH(+)1528-G1543) were only observed in the context of the intact ribosomal subunit and were not seen in deproteinized rRNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC97597PMC
http://dx.doi.org/10.1093/nar/29.24.5067DOI Listing

Publication Analysis

Top Keywords

base pair
16
23s molecule
8
protonated base
4
pair
4
pair participating
4
participating rrna
4
rrna tertiary
4
tertiary structural
4
structural interactions
4
interactions published
4

Similar Publications

Artificially synthesized DNA holds significant promise in addressing fundamental biochemical questions and driving advancements in biotechnology, genetics, and DNA digital data storage. Rapid and precise electric identification of these artificial DNA strands is crucial for their effective application. Herein, we present a comprehensive investigation into the electric recognition of eight artificial synthesized DNA (DNA and DNA) nucleobases using quantum tunneling transport and machine learning (ML) techniques.

View Article and Find Full Text PDF

In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known.

View Article and Find Full Text PDF

A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is identified by the accumulation of amyloid β (Aβ) and tau proteins in the brain. The NeuroToolKit offers automated cerebrospinal fluid (CSF) immunoassays of core AD biomarkers and biomarkers of neurodegeneration and synaptic function, including neurofilament light (NfL), SNAP-25, and neuronal pentraxin 2 (NPTX2). This work explores whether these three markers predict pre-dementia cognitive decline synergistically with or after accounting for CSF ptau/Aβ.

View Article and Find Full Text PDF

Environmental DNA (eDNA) analysis has become a popular conservation tool for detecting rare and elusive species. eDNA assays typically target mitochondrial DNA (mtDNA) due to its high copy number per cell and its ability to persist in the environment longer than nuclear DNA. Consequently, the development of eDNA assays has relied on mitochondrial reference sequences available in online databases, or in cases where such data are unavailable, de novo DNA extraction and sequencing of mtDNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!