In denitrifying organisms with copper containing dissimilatory nitrite reductases, electron donation from a reduced cupredoxin is an essential step in the reduction of nitrite to nitric oxide. Copper nitrite reductases are categorised into two subgroups based on their colour, green and blue, which are found in organisms where the cupredoxins are pseudoazurins and azurins, respectively. In view of this and some in vitro electron donation experiments, it has been suggested that copper nitrite reductases have specific electron donors and that electron transfer takes place in a specific complex of the two proteins. We report results from the first comprehensive electron donation experiments using three copper nitrite reductases, one green and two blue, and five cupredoxins, one pseudoazurin and four azurins. Our data show that pseudoazurin can readily donate electrons to both blue and green copper nitrite reductases. In contrast, all of the azurins react very sluggishly as electron donors to the green nitrite reductase. These results are discussed in terms of surface compatibility of the component proteins, complex formation, overall charges, charge distribution, hydrophobic patches and redox potentials. A docking model for the complexes is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.2001.5253DOI Listing

Publication Analysis

Top Keywords

nitrite reductases
24
copper nitrite
20
electron donation
16
nitrite
8
complex formation
8
green blue
8
donation experiments
8
electron donors
8
electron
7
copper
6

Similar Publications

Community Assembly Mechanisms of nirK- and nirS-type Denitrifying Bacteria in Sediments of Eutrophic Lake Taihu, China.

Curr Microbiol

December 2024

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China.

Denitrifying bacteria, particularly nirK- and nirS-type, are functionally equivalent and could occupy different niches, but their community assembly mechanisms and responses to environmental heterogeneity are poorly understood in eutrophic lakes. In this study, we investigated the community assembly mechanisms of nirK- and nirS-type denitrifying bacteria and clarified their responses to sediments environmental factors in Lake Taihu, China. The quantitative real-time PCR and Illumina HiSeq-based sequencing revealed that the abundance and composition of two types of denitrifying bacterial communities varied among different sites in the sediments of Lake Taihu.

View Article and Find Full Text PDF

Nitrate reductases play pivotal roles in nitrogen metabolism by leveraging the molybdopterin cofactor to facilitate the reduction of nitrate to nitrite. Periplasmic nitrate reductases (NapA) utilize nitrate as a terminal electron acceptor when oxygen is limiting, helping to drive anaerobic metabolism in bacteria. Despite extensive research into NapA homologs, open questions about the mechanism remain especially at the molecular level.

View Article and Find Full Text PDF

The recently proposed partial denitrification (PD), terminating nitrate reduction to nitrite, has been regarded as a promising alternative to nitrite supplying for anammox bacteria. The most important aspect of the PD process for engineering application is the stable and continuous supply of nitrite. However, the activity of nitrate reductase is often higher than that of nitrite reductase (NIR), making it difficult to accumulate nitrite during the denitrification process.

View Article and Find Full Text PDF

Regulation mechanism of nitrite degradation in Lactobacillus plantarum WU14 mediated by Fnr.

Arch Microbiol

November 2024

Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.

Fumarate and nitrate reduction regulatory protein (Fnr)-a global transcriptional regulator-can directly or indirectly regulate many genes in different metabolic pathways at the top of the bacterial transcription regulation network. The present study explored the regulatory mechanism of Fnr-mediated nitrite degradation in Lactobacillus plantarum WU14 through gene transcription and expression analysis of oxygen sensing and nir operon expression regulation by Fnr. The interaction and the mechanism of transcriptional regulation between Fnr and GlnR were also examined under nitrite stress.

View Article and Find Full Text PDF

Background: Strain JAM1 and strain GP59 of the methylotrophic, bacterial species were isolated from a microbial community of the biofilm that developed in a fluidized-bed, methanol-fed, marine denitrification system. Despite of their common origin, both strains showed distinct physiological characters towards the dynamics of nitrate ( ) reduction. Strain JAM1 can reduce to nitrite ( ) but not to nitric oxide (NO) as it lacks a NO-forming reductase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!