Reaction of melatonin with the hypervalent iron centre of oxoferryl hemoglobin, produced in aqueous solution from methemoglobin and H2O2, has been investigated at 37 degrees C and pH 7.4, by absorption spectroscopy. The reaction results in reduction of the oxoferryl moiety with formation of a heme-ferric containing hemoprotein. Stopped-flow spectrophotometric measurements provide evidence that the reduction of oxoferryl-Hb by melatonin is first-order in oxoferryl-Hb and first-order in melatonin. The bimolecular reaction constant at pH 7.4 and 37 degrees C is 112 +/- 1.0 M(-1) s(-1). Two major oxidation products from melatonin have been found by gas chromatography-mass spectroscopy: the cyclic compound 1,2,3,3a,8,8a-hexahydro-1-acetyl-5-methoxy-3a-hydroxypyrrolo[2,3-b]indole (cyclic 3-hydroxy-melatonin), and N-acetyl-N'-formyl 5-methoxykynuramine (AFMK). The percentage yield of the two major products appears dependent on the ratio [oxoferryl-Hb]:[melatonin]--the higher the ratio the higher the yield of AFMK. The observed stoichiometry oxoferryl-Hb(reduced):melatonin(consumed) is 2, when the ratio [oxoferryl-Hb]:[melatonin] is 1:1, but appears >2 at higher molar ratios. The reduction of the hypervalent iron of the oxoferryl moiety may be consistent with an oxidation of melatonin by two one-electron steps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10715760100301161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!