The two properties of aliphatic amines were investigated in propylene carbonate as solvent that are decisive for capillary electrophoretic migration: the actual mobilities and the pKa* values. Solutes were eight primary, secondary, and tertiary amines. Roughly, the actual ionic mobilities of the ammonium ions are inversely proportional to the solvent viscosity, fairly obeying Walden's rule. The pKa* values of the cation acids, HB+ (the corresponding acids of the amines, B), were related to the conventional pH* scale of the buffers. Determined from the effective mobilities as a function of the pH*, they are increased by approximately 7 units compared to water. This increase was interpreted based on the concept of the standard free energy of transfer of the individual species in the acid-base equilibrium. The corresponding medium effect on the proton, log mgammaH+ (the logarithm of the transfer activity coefficient mgammaH+) is approximately +8. The medium effect on the free base, B, was obtained from solubility data; it is about -1 and smaller. Plausible values for the medium effect on the cation HB+ (-1 to -2) lead to a sum of the increments, which corresponds with the overall effect, expressed by the change in pKa*. Examination of the individual contributions shows that the drastically lower basicity of propylene carbonate compared to water is mainly responsible for the increase in pKa upon transfer of the acid-base equilibrium of aliphatic ammonium/amine from the aqueous to the organic solvent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac010887xDOI Listing

Publication Analysis

Top Keywords

propylene carbonate
12
aliphatic amines
8
pka* values
8
compared water
8
acid-base equilibrium
8
carbonate nonaqueous
4
solvent
4
nonaqueous solvent
4
solvent capillary
4
capillary electrophoresis
4

Similar Publications

Anode-free aqueous zinc metal batteries (AZMBs) offer significant potential for energy storage due to their low cost and environmental benefits. TiCT MXene provides several advantages over traditional metallic current collectors like Cu and Ti, including better Zn plating affinity, lightweight, and flexibility. However, self-freestanding MXene current collectors in AZMBs remain underexplored, likely due to challenges with Zn deposition reversibility.

View Article and Find Full Text PDF

The photopolymerization-induced microphase separation (photo-PIMS) process involving a reactive polymer block was implemented to fabricate nanostructured quasi-solid polymer electrolytes (QSPEs) for use in lithium metal batteries (LMBs). This innovative one-pot fabrication enhances interfacial properties in LMBs by enabling nanostructuring of QSPE directly onto the electrodes. This process also allows for customization of QSPE structural dimensions by tweaking the architecture and molar mass of poly[(oligo ethylene glycol) methyl ether methacrylate--styrene] (P(OEGMA--S)) macromolecular chain transfer agent.

View Article and Find Full Text PDF

The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy.

View Article and Find Full Text PDF

Solution Casting Effect of PMMA-Based Polymer Electrolyte on the Performances of Solid-State Electrochromic Devices.

Polymers (Basel)

January 2025

Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia.

Electrochromic devices (ECDs) are devices that change their optical properties in response to a low applied voltage. These devices typically consist of an electrochromic layer, a transparent conducting substrate, and an electrolyte. The advancement in solid-state ECDs has been driven by the need for improved durability, optical performance, and energy efficiency.

View Article and Find Full Text PDF

Pyrene (Pr) was used to improve the electrochemical and electrochromic properties of polythiophene copolymerized with 3,4-ethylenedioxythiophene (EDOT). The corresponding product, poly(3,4-ethylenedioxythiophene-co-Pyrene) (P(EDOT-co-Pr)), was successfully synthesized by electrochemical polymerization with different monomer concentrations in propylene carbonate solution containing 0.1 M lithium perchlorate (LiClO/PC (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!