We report a total of 23 novel mutations of the SLC2A2 ( GLUT2) gene in 49 patients with a clinical diagnosis of Fanconi-Bickel syndrome (FBS). Molecular genetic analysis has now been performed in more than 50% of the 109 FBS cases from 88 families that we have been able to locate world-wide since the original report in 1949. In these 49 patients, 33 different SLC2A2 mutations (9 missense, 7 nonsense, 10 frameshift, 7 splice-site) have been detected. Thus, our results confirm that mutations of SLC2A2 are the basic defect in patients with FBS. Mutations of SLC2A2 were detected in historical FBS patients in whom some of the characteristic clinical features (hepatorenal glycogen accumulation, glucose and galactose intolerance, fasting hypoglycemia, a characteristic tubular nephropathy) and the effect of therapy were described for the first time. Mutations were also found in patients with atypical clinical signs such as intestinal malabsorption, failure to thrive, the absence of hepatomegaly, or renal hyperfiltration. No single prevalent SLC2A2 mutation was responsible for a significant number of cases. In a high percentage (74%) of FBS patients, the mutation is homozygous, so we conclude that the prevalence of SLC2A2 mutations is relatively low in most populations. No mutational hot spots within SLC2A2 or even within homologous sequences among the genes for facilitative glucose transporters were detected.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-001-0638-6DOI Listing

Publication Analysis

Top Keywords

mutations slc2a2
12
facilitative glucose
8
slc2a2
8
slc2a2 glut2
8
fanconi-bickel syndrome
8
slc2a2 mutations
8
fbs patients
8
patients
7
mutations
6
fbs
5

Similar Publications

Constitutive Pleiotrophin Deletion Results in a Phenotype with an Altered Pancreatic Morphology and Function in Old Mice.

Int J Mol Sci

October 2024

Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain.

Pleiotrophin (PTN) is crucial for embryonic development and pancreas organogenesis as it regulates metainflammation, metabolic homeostasis, thermogenesis, and glucose tolerance. Pleiotrophin deletion is associated with a lipodystrophic phenotype in which adipose tissue plasticity is altered in late life. This study explored the impact of pleiotrophin deletion on pancreatic morphology and function in later life.

View Article and Find Full Text PDF

Background: The diagnosis of neonatal diabetes can be problematic in preterm infants with fetal growth restriction (FGR). Growth restricted fetuses may have impaired insulin production and secretion; low birthweight infants may have a reduced response to insulin. We report a novel missense ABCC8 variant associated with a clinical phenotype compatible with transient neonatal diabetes mellitus (TNDM) in a fetal growth restricted preterm infant.

View Article and Find Full Text PDF

Missense mutation of ISL1 (E283D) is associated with the development of type 2 diabetes.

Diabetologia

August 2024

Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Aims/hypothesis: Mutations in Isl1, encoding the insulin enhancer-binding protein islet-1 (ISL1), may contribute to attenuated insulin secretion in type 2 diabetes mellitus. We made an Isl1 mouse model to investigate the disease-causing mechanism of diabetes mellitus.

Methods: The ISL1 mutation (c.

View Article and Find Full Text PDF

Objectives: Adverse food reactions, often underestimated, encompass congenital monosaccharide-disaccharide metabolism disorders, yielding diverse outcomes such as abdominal pain, diarrhea, bleeding disorders, and even death. This study retrospectively scrutinized genetic variants linked to these disorders in a cohort subjected to whole-exome sequence analysis (WES), determining carrier frequencies and genotype-phenotype correlations.

Methods: Data from 484 patients, were retrospectively analyzed using a gene panel (ALDOB, FBP1, GALE, GALK1, GALM, GALT, LCT, SLC2A2, SLC5A1, SI) for congenital monosaccharide-disaccharide metabolism disorders.

View Article and Find Full Text PDF

Fanconi-Bickel syndrome (FBS) is a rare metabolic disorder caused by decreased glucose transporter 2 (GLUT2) function due to several known mutations in the gene. As of 2020, 144 cases of FBS have been described in the literature. Metabolic and somatic sequelae include dysglycemia and accumulation of glycogen in the kidney and liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!