Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis.

Mol Biol Cell

Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Published: January 2002

Upon plating on basement membrane Matrigel, NIH3T3 cells formed an anastomosing network of cord-like structures, inhibitable by anti-alpha6beta1 integrin antibodies. For NIH3T3 cells transfected with human CD151 protein, the formation of a cord-like network was also inhibitable by anti-CD151 antibodies. Furthermore, CD151 and alpha6beta1 were physically associated within NIH3T3 cells. On removal of the short 8-amino acid C-terminal CD151 tail (by deletion or exchange), exogenous CD151 exerted a dominant negative effect, as it almost completely suppressed alpha6beta1-dependent cell network formation and NIH3T3 cell spreading on laminin-1 (an alpha6beta1 ligand). Importantly, mutant CD151 retained alpha6beta1 association and did not alter alpha6beta1-mediated cell adhesion to Matrigel. In conclusion, the CD151-alpha6beta1 integrin complex acts as a functional unit that markedly influences cellular morphogenesis, with the CD151 tail being of particular importance in determining the "outside-in" functions of alpha6beta1-integrin that follow ligand engagement. Also, antibodies to alpha6beta1 and CD151 inhibited formation of endothelial cell cord-like networks, thus pointing to possible relevance of CD151-alpha6beta1 complexes during angiogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC65068PMC
http://dx.doi.org/10.1091/mbc.01-10-0481DOI Listing

Publication Analysis

Top Keywords

nih3t3 cells
12
cd151-alpha6beta1 integrin
8
integrin complex
8
cellular morphogenesis
8
cd151 tail
8
cd151
7
function tetraspanin
4
tetraspanin cd151-alpha6beta1
4
complex cellular
4
morphogenesis plating
4

Similar Publications

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

Autophagy inhibition alleviates tumor desmoplasia and improves the efficacy of locally and systemically administered liposomal doxorubicin.

J Control Release

December 2024

Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

The abnormal physiology of the tumor microenvironment poses a challenge to the drug delivery in the tumor tissues. The dense tumor stroma hinders the movement of nanomedicine through the interstitium and negatively impacts their efficacy. In this study, hydroxychloroquine (HCQ) was investigated for its impact on alleviating the hindrance offered to the nanomedicine by extracellular matrix (ECM) components such as collagen and hyaluronan.

View Article and Find Full Text PDF

Sustainable Synthesis of Nitrogen-Embedded CuS Quantum Dots for In Vitro and In Vivo Breast Cancer Management.

ACS Appl Bio Mater

January 2025

Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh 202002, Uttar Pradesh, India.

The burgeoning field of nanomedicine is exploring quantum dots for cancer theranostics. In recent years, chemically engineered copper sulfide (CuS) quantum dots (QDs) have emerged as a multifunctional platform for fluorescence-based sensors with prominent applications in imaging and chemodynamic therapy of tumor cells. The present study demonstrates the sustainable synthesis of nitrogen-embedded copper sulfide (N@CuS) quantum dots for the first time and unveils their potential application in in vitro and in vivo breast cancer management.

View Article and Find Full Text PDF

Co-essentiality analysis identifies PRR12 as a cohesin interacting protein and contributor to genomic integrity.

Dev Cell

December 2024

Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address:

The cohesin complex is critical for genome organization and regulation, relying on specialized co-factors to mediate its diverse functional activities. Here, by analyzing patterns of similar gene requirements across cell lines, we identify PRR12 as a mediator of cohesin and genome integrity. We show that PRR12 interacts with NIPBL/MAU2 and the cohesin complex, and that the loss of PRR12 results in reduced cohesin localization and a substantial increase in DNA double-strand breaks in mouse NIH-3T3 cells.

View Article and Find Full Text PDF

Antimicrobial resistance poses a significant global health threat by reducing the effectiveness of conventional antibiotics, particularly against pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). This study investigates the antimicrobial potential of rhizospheric soil bacteria from Prosopis cineraria (Sangri) in the Thar Desert. Bacterial strains isolated from these samples were observed to produce secondary metabolites, notably, Iturin A C-15 cyclic lipopeptide (SS1-3-P) which was extracted from strain Enterobacter cloacae SS1-3 and was purified and characterized using reverse-phase HPLC, ESI-LC/MS, Nile-Red Assay, and FT-IR analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!