Haploinsufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development.

J Biol Chem

Department of Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607-7170, USA.

Published: April 2002

The forkhead box f1 (Foxf1) transcription factor is expressed in the visceral (splanchnic) mesoderm, which is involved in mesenchymal-epithelial signaling required for development of organs derived from foregut endoderm such as lung, liver, gall bladder, and pancreas. Our previous studies demonstrated that haploinsufficiency of the Foxf1 gene caused pulmonary abnormalities with perinatal lethality from lung hemorrhage in a subset of Foxf1+/- newborn mice. During mouse embryonic development, the liver and biliary primordium emerges from the foregut endoderm, invades the septum transversum mesenchyme, and receives inductive signaling originating from both the septum transversum and cardiac mesenchyme. In this study, we show that Foxf1 is expressed in embryonic septum transversum and gall bladder mesenchyme. Foxf1+/- gall bladders were significantly smaller and had severe structural abnormalities characterized by a deficient external smooth muscle cell layer, reduction in mesenchymal cell number, and in some cases, lack of a discernible biliary epithelial cell layer. This Foxf1+/- phenotype correlates with decreased expression of vascular cell adhesion molecule-1 (VCAM-1), alpha(5) integrin, platelet-derived growth factor receptor alpha (PDGFRalpha) and hepatocyte growth factor (HGF) genes, all of which are critical for cell adhesion, migration, and mesenchymal cell differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M112162200DOI Listing

Publication Analysis

Top Keywords

gall bladder
12
septum transversum
12
forkhead box
8
foregut endoderm
8
cell layer
8
mesenchymal cell
8
cell adhesion
8
growth factor
8
cell
6
haploinsufficiency mouse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!