Adrenal pathology may be discussed based on hormonal functionality of the adrenals, appearances on imaging modality, or pathological determination. There are three main categories of adrenal function. Hyperfunctional states include Conn's or Cushing's syndrome. Lesions with normal function may be detected incidentally. Hypofunctional states may occur from idiopathic Addison's disease or some bilateral adrenal pathology. The most common modalities for characterization of adrenal pathology are non-enhanced CT, often followed by contrast CT or chemical shift MRI. The common appearance on non-enhanced CT is a well-defined homogeneous lesion with low-density due to the microscopic fat present and adrenal adenomas. When density criteria are not met, many of these may be characterized as adenomas by washed out of contrast or signal decrease using in phase and out-of-phase MRI sequences. Other non-invasive modalities may incidentally discover adrenal lesions, but are not typically used in the work-up. NP-59 is an uncommonly used nuclear medicine technique which is very specific for adenoma when correlated with pathology on other imaging studies. In the rare cases where non-invasive imaging is non-specific, fine needle aspiration or core biopsies may be necessary. However, biopsies have associated risks including infection and hemorrhage. The imaging appearance of an adrenal lesion is often specific such that further imaging is not necessary. These lesions include adrenal adenoma, pheochromocytoma, myelolipoma, adrenal cyst, and some large adrenocortical carcinomas. However, the findings in lesions such as metastasis, smaller primary adrenal carcinomas, lymphoma, granulomatous disease, and many adenomas are not as specific. In the proper clinical situation, follow-up imaging may be necessary, or biopsy may be warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0720-048x(01)00444-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!